CNN负数参数

时间:2019-07-05 15:42:38

标签: python tensorflow keras conv-neural-network

我正在尝试使用keras构建CNN模型。当我添加两个Conv3D和MaxPooling块时,一切正常。但是,一旦添加了第三个块(如代码中所示),则可训练参数的数量将变为负值。知道如何发生吗?

model = keras.models.Sequential()

# # # First Block
model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='valid', input_shape=(157, 462, 14), activation = 'tanh' ))
model.add(MaxPooling2D( (2,2) ))

# # # Second Block     
model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='valid', activation = 'tanh'))
model.add(MaxPooling2D( (2, 2) ))

# # # Third Block   
model.add(Conv2D(filters=64, kernel_size=(5, 5), padding='valid', activation = 'tanh'))
model.add(MaxPooling2D( (2, 2) ))

model.add(Flatten())
model.add(Dense(157 * 462))
model.compile(loss='mean_squared_error',
              optimizer=keras.optimizers.Adamax(),
               metrics=['mean_absolute_error'])

print(model.summary())

此代码的结果如下:

Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 153, 458, 16)      5616      
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 76, 229, 16)       0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 72, 225, 32)       12832     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 36, 112, 32)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 32, 108, 64)       51264     
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 16, 54, 64)        0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 55296)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 72534)             -284054698
=================================================================
Total params: -283,984,986
Trainable params: -283,984,986
Non-trainable params: 0
_________________________________________________________________
None

2 个答案:

答案 0 :(得分:1)

是的,当然,您的Dense层的权重矩阵大小为55296 x 72534,其中包含4010840064个数字,即401,000万个参数。

在Keras代码中的某个地方,参数数量存储为int32,这意味着它可以存储的数字数量有限,即2^32 - 1 = 2147483647,现在您可以看到,您的401,000万个参数是大于2^32 - 1,因此数字溢出到整数的负数。

我建议您不要建立具有如此大量参数的模型,否则,如果没有大量的RAM,您将无法进行训练。

答案 1 :(得分:0)

问题是因为您正在CPU中运行代码,因此keras tensorflow或theano的后端可以正常工作。我能够在Google colab中使用GPU完美地运行您的代码,这就是我得到的

CL_ABAP_REGEX

我建议您使用GPU训练如此庞大的网络。

希望这会有所帮助!