我是一个初学者,正在学习编码图像分类器。我的目标是创建一个predict
函数。
是否有解决建议?
在这个项目中,我想使用预测功能来识别不同的花卉种类。所以我以后可以检查他们的标签。
试图修复:我已经使用了unsqueeze_(0)
方法,并从numpy更改为torch方法。我通常会收到以下相同的错误消息:
TypeError:img应该是PIL
代码:
# Imports here
import pandas as pd
import numpy as np
import torch
from torch import nn
from torchvision import datasets, transforms, models
import torchvision.models as models
import torch.nn.functional as F
import torchvision.transforms.functional as F
from torch import optim
import json
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from PIL import Image
def process_image(image):
#Scales, crops, and normalizes a PIL image for a PyTorch model,
#returns an Numpy array
# Process a PIL image for use in a PyTorch model
process = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
image = process(image)
return image
# Predict
#Predict the class (or classes) of an image using a trained deep learning model.
def predict(image, model, topk=5):
img = process_image(image)
img = img.unsqueeze(0)
output = model.forward(img)
probs, labels = torch.topk(output, topk)
probs = probs.exp()
# Reverse the dict
idx_to_class = {val: key for key, val in model.class_to_idx.items()}
# Get the correct indices
top_classes = [idx_to_class[each] for each in classes]
return labels, probs
#Passing
probs, classes = predict(image, model)
print(probs)
print(classes)
TypeError Traceback (most recent call last)
<ipython-input-92-b49fdcab5791> in <module>()
----> 1 probs, classes = predict(image, model)
2 print(probs)
3 print(classes)
<ipython-input-91-05809355bfe0> in predict(image, model, topk)
2 ‘’' Predict the class (or classes) of an image using a trained deep learning model.
3 ‘’'
----> 4 img = process_image(image)
5 img = img.unsqueeze(0)
6
<ipython-input-20-02663a696e34> in process_image(image)
11 std=[0.229, 0.224, 0.225])
12 ])
---> 13 image = process(image)
14 return image
/opt/conda/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.egg/torchvision/transforms/transforms.py in __call__(self, img)
47 def __call__(self, img):
48 for t in self.transforms:
---> 49 img = t(img)
50 return img
51
/opt/conda/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.egg/torchvision/transforms/transforms.py in __call__(self, img)
173 PIL Image: Rescaled image.
174 “”"
--> 175 return F.resize(img, self.size, self.interpolation)
176
177 def __repr__(self):
/opt/conda/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.egg/torchvision/transforms/functional.py in resize(img, size, interpolation)
187 “”"
188 if not _is_pil_image(img):
--> 189 raise TypeError(‘img should be PIL Image. Got {}’.format(type(img)))
190 if not (isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)):
191 raise TypeError(‘Got inappropriate size arg: {}’.format(size))
TypeError: img should be PIL Image. Got <class ‘str’>
我要做的就是得到这些相似的结果。谢谢!
predict(image,model)
print(probs)
print(classes)
tensor([[ 0.5607, 0.3446, 0.0552, 0.0227, 0.0054]], device='cuda:0')
tensor([[ 8, 1, 31, 24, 7]], device='cuda:0')
答案 0 :(得分:0)
由于stdout
函数中的以下行,您遇到了以上错误:
predict
img = process_image(image)
函数的输入应该是process_image
,而不是Image.open(image)
,它基本上是图像(字符串)的路径,因此是错误消息image
。 / p>
因此,将TypeError: img should be PIL Image. Got <class ‘str’>
更改为img = process_image(image)
修改后的img = process_image(Image.open(image))
函数:
predict