当我尝试通过TypeError: pic should be PIL Image or ndarray. Got <class 'numpy.ndarray'>
加载非图像数据集时,出现错误DataLoader
。 torch
和torchvision
的版本分别为1.0.1
和0.2.2.post3
。在3.7.1
机器上,Python的版本为Windows 10
。
代码如下:
class AndroDataset(Dataset):
def __init__(self, csv_path):
self.transform = transforms.Compose([transforms.ToTensor()])
csv_data = pd.read_csv(csv_path)
self.csv_path = csv_path
self.features = []
self.classes = []
self.features.append(csv_data.iloc[:, :-1].values)
self.classes.append(csv_data.iloc[:, -1].values)
def __getitem__(self, index):
# the error occurs here
return self.transform(self.features[index]), self.transform(self.classes[index])
def __len__(self):
return len(self.features)
然后我设置了加载器:
training_data = AndroDataset('android.csv')
train_loader = DataLoader(dataset=training_data, batch_size=batch_size, shuffle=True)
这是完整的错误堆栈跟踪:
Traceback (most recent call last):
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\pydevd.py", line 1758, in <module>
main()
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\pydevd.py", line 1752, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\pydevd.py", line 1147, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "C:/Users/talha/Documents/PyCharmProjects/DeepAndroid/deep_test_conv1d.py", line 231, in <module>
main()
File "C:/Users/talha/Documents/PyCharmProjects/DeepAndroid/deep_test_conv1d.py", line 149, in main
for i, (images, labels) in enumerate(train_loader):
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torch\utils\data\dataloader.py", line 615, in __next__
batch = self.collate_fn([self.dataset[i] for i in indices])
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torch\utils\data\dataloader.py", line 615, in <listcomp>
batch = self.collate_fn([self.dataset[i] for i in indices])
File "C:/Users/talha/Documents/PyCharmProjects/DeepAndroid/deep_test_conv1d.py", line 102, in __getitem__
return self.transform(self.features[index]), self.transform(self.classes[index])
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torchvision\transforms\transforms.py", line 60, in __call__
img = t(img)
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torchvision\transforms\transforms.py", line 91, in __call__
return F.to_tensor(pic)
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torchvision\transforms\functional.py", line 50, in to_tensor
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
TypeError: pic should be PIL Image or ndarray. Got <class 'numpy.ndarray'>
答案 0 :(得分:0)
发生这种情况是因为您使用了转换:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>Home</title>
</head>
<body>
<div class="head">
<div class="logo">
<a href="index.html"><img src="images/logo.png"></a>
</div>
<div class="sign-up">
<a href="#">Login</a>
</div>
</div>
<div class="top-search">
<div class="custom-container">
<div class="center-div">
<div class="banner-form">
<form class="">
<div class="form-row">
<div class="col-5">
<input type="text" class="form-control" placeholder="Enter Your Address">
</div>
<div class="col-3">
<input type="text" class="form-control" placeholder="US">
</div>
<button class="relative br-right pv2" data-test="search-button" aria-label="Search" type="submit">Search</button>
</div>
</form>
<div class="banner-img">
<img src="images/banner-home.png" class="img-fluid">
</div>
</div>
</div>
</div>
</div>
</body>
</html>
正如您在documentation中所看到的,self.transform = transforms.Compose([transforms.ToTensor()])
将PIL图像或torchvision.transforms.ToTensor
转换为张量。因此,如果要使用此转换,则数据必须是上述类型之一。
答案 1 :(得分:0)
扩展@MiriamFarber的答案,就不能在transforms.ToTensor()
个对象上使用numpy.ndarray
。您可以使用torch.from_numpy()
将numpy
数组转换为torch
张量,然后将张量转换为所需的数据类型。
例如:
>>> import numpy as np
>>> import torch
>>> np_arr = np.ones((5289, 38))
>>> torch_tensor = torch.from_numpy(np_arr).long()
>>> type(np_arr)
<class 'numpy.ndarray'>
>>> type(torch_tensor)
<class 'torch.Tensor'>
答案 2 :(得分:0)
如果要在numpy
数组上使用torchvision.transforms,请先使用transforms.ToPILImage()
将numpy数组转换为PIL Image对象