每个单元格和日期都有降水数据(1800行和15k列)。
486335 486336 486337
2019-07-03 13:35:54.445 0 2 22
2019-07-04 13:35:54.445 0 1 1
2019-07-05 13:35:54.445 16 8 22
2019-07-06 13:35:54.445 0 0 0
2019-07-07 13:35:54.445 0 11 0
我想查找达到特定降雨量(> 15mm)的日期,并计算该事件发生后的天数少雨(<1.1mm)。连同雨量,开始和结束时间,单元格和其他信息一起存储在新的DataFrame中。
我编写了一个for循环来完成这项工作,但是花了几天的时间才能完成;(。我是python的初学者,所以也许有一些其他方法的技巧。
from datetime import datetime, timedelta, date
import datetime
import pandas as pd
#Existing Data
index_dates = pd.date_range(pd.datetime.today(), periods=10).tolist()
df = pd.DataFrame({'486335':[0,0,16,0,0,0,2,1,8,2],'486336':[2,1,8,0,11,16,0,1,6,8],'486337':[22,1,22,0,0,0,5,3,6,1]},index=index_dates)
columns = df.columns
counter_columns = 0
iteration = -1 #Iterations Steps
counter = 10 #10 precipitation values per column
duration = 0 #days with no or less than pp_max_1 rain
count = False
index_list = df.index #Index for updating df / Integear
period_range = 0 #Amount of days after Event without much rain Integear
period_amount = 0 #Amount of PP in dry days except event Integear
event_amount = 0.0 #Amount of heavy rainfall on the event date Float
pp = 0 #actual precipitation
pp_sum = 0.0 #mm
pp_min = 15.0 #mm min pp for start to count dry days until duration_min_after
pp_max_1 = 0.11 #max pp for 1 day while counting dry days
dry_days = 0 #dry days after event
for x in df:
for y in df[x]:
iteration = iteration + 1
if iteration == counter:
iteration = 0
counter_columns = counter_columns + 1
print("column :",counter_columns, "finished")
if y >= pp_min and count == False:
duration = duration + 1
count = True
start_period = index_list[iteration]
event_amount = y
index = iteration
pp_sum = pp_sum + y
elif y >= pp_min and count == True or y >= pp_max_1 and count == True:
end_period = index_list[iteration]
dry_periods = dry_periods.append({"start_period":start_period ,"end_period":end_period,"period_range":duration,"period_amount":pp_sum ,"event_amount":event_amount, "cell":columns[counter_columns]},ignore_index=True).sort_values('period_range',ascending=False)
duration = 0
count = False
pp_sum = 0
elif pp <= pp_max_1 and count == True:
duration = duration + 1
pp_sum = pp_sum + y
else:
continue
print(dry_periods)
输出看起来像这样
start_period end_period period_range \
0 2019-07-05 13:15:05.545 2019-07-09 13:15:05.545 4
1 2019-07-05 13:15:05.545 2019-07-09 13:15:05.545 4
2 2019-07-05 13:15:36.569 2019-07-09 13:15:36.569 4
3 2019-07-05 13:15:36.569 2019-07-09 13:15:36.569 4
4 2019-07-05 13:16:16.372 2019-07-09 13:16:16.372 4
5 2019-07-05 13:16:16.372 2019-07-09 13:16:16.372 4
period_amount event_amount cell
0 16.0 16 486335
1 22.0 22 486337
2 16.0 16 486335
3 22.0 22 486337
4 16.0 16 486335
5 22.0 22 486337
答案 0 :(得分:3)
您可以避免在行上进行迭代,因为它不适用于大型数据框。
这是另一种方法,不确定对于您的完整数据框是否会更有效:
periods=[]
for cell in df.columns:
sub = pd.DataFrame({'amount': df[cell].values}, index=df.index)
sub['flag'] = pd.cut(sub['amount'], [0.11, 15, np.inf],
labels=[0, 1]).astype(np.float)
sub.loc[sub.flag>0, 'flag']=sub.loc[sub.flag>0, 'flag'].cumsum()
sub.flag.ffill(inplace=True)
x = sub[sub.flag>0].reset_index().groupby('flag').agg(
{'index':['min', 'max'], 'amount': 'sum'})
x.columns = ['start', 'end', 'amount']
x['period_range'] = (x.end - x.start).dt.days + 1
x['cell'] = cell
x.reindex(columns=['start', 'end', 'period_range', 'cell'])
periods.append(x)
resul = pd.concat(periods).reset_index(drop=True)
答案 1 :(得分:2)
因为我没有您的全部数据集,所以我无法真正说出消耗时间的时间,但是我想这是由于索引访问,获取周期中执行的周期和排序操作所致。也许您想尝试以下代码。 在逻辑上,它应该与您的代码等效,除了一些更改之外:
duration = 0 #days with no or less than pp_max_1 rain
count = False
index_list = df.index #Index for updating df / Integear
period_range = 0 #Amount of days after Event without much rain Integear
period_amount = 0 #Amount of PP in dry days except event Integear
event_amount = 0.0 #Amount of heavy rainfall on the event date Float
pp = 0 #actual precipitation
pp_sum = 0.0 #mm
pp_min = 15.0 #mm min pp for start to count dry days until duration_min_after
pp_max_1 = 0.11 #max pp for 1 day while counting dry days
dry_days = 0 #dry days after event
dry_periods= list()
for counter_columns, column in enumerate(df.columns, 1):
for period, y in df[column].items():
if not count and y >= pp_min:
duration += 1
count = True
start_period = period
event_amount = y
pp_sum += y
elif count and (y >= pp_min or y >= pp_max_1):
end_period = period
dry_periods.append({
"start_period": start_period ,
"end_period": end_period,
"period_range": duration,
"period_amount": pp_sum ,
"event_amount": event_amount,
"cell": column})
duration = 0
count = False
pp_sum = 0
elif count and pp <= pp_max_1:
duration += 1
pp_sum += y
print("column :",counter_columns, "finished")
dry_periods.sort(key=lambda record: record['period_range'])
print(dry_periods)
更改为:
顺便说一句。因为我不知道dry_periods的定义方式,所以我只是将其用作列表。请看看情况
elif count and (y >= pp_min or y >= pp_max_1):
以上。在我看来,这很可疑,但这只是您程序中的重写条件。如果可以,您可以删除其中一个比较,因为我猜是pp_min