我正在尝试在我的数据上训练CNN model
,该数据是由gray-scale
由numpy数组生成的OpenCV
图像的集合,这些图像是75*70
像素。我收到以下错误:
ValueError: Error when checking input: expected conv2d_25_input to have
shape (64, 64, 1) but got array with shape (64, 64, 3)
这是我的代码:
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64,64,1), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
#classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
#classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 750, activation = 'softmax'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('train',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('test',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
classifier.fit_generator(training_set,
samples_per_epoch = 525,
nb_epoch = 25,
validation_data = test_set,
nb_val_samples = 225)
我的图片只有一个通道,但是仍然出现此输入形状错误, 有人可以帮我吗?
编辑:
我在keras documentation
中找到了答案,ImageDataGenerator
默认color_mode
是rgb
,所以我将其更改为grayscale
,解决了{{1} }
代码看起来像这样;
input shape
但是,我遇到另一个错误:
training_set = train_datagen.flow_from_directory('train',
target_size = (64,64),
color_mode = 'grayscale',
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('test',
target_size = (64, 64),
color_mode = 'grayscale',
batch_size = 32,
class_mode = 'categorical')
我不知道... !!
答案 0 :(得分:0)
为什么不尝试使用.reshape(64,64,1)来确保图像在一个通道中