我在计算每个训练步骤的设计模型的精确度时遇到问题,该模型的精确度为0.5。它具有一个输出神经元,对番茄撕裂是否有用。
我尝试最后使用BCEWithLogitsloss()删除和添加辍学层和损失函数,但没有任何改善。
代码部分已粘贴
model_conv = torchvision.models.vgg16(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.classifier[6].out_features
model_conv.classifier = nn.Sequential(model_conv.classifier, nn.ReLU(inplace=True),
nn.Linear(num_ftrs,1),nn.Sigmoid())
print(model_conv)
model_conv = model_conv.to(device)
criterion = nn.MSELoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.classifier[2].parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
#
# On CPU this will take about half the time compared to previous scenario.
# This is expected as gradients don't need to be computed for most of the
# network. However, forward does need to be computed.
#
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
我希望准确度应在每个步骤中都发生变化,但不会改变。