我在TensorFlow 1.14.0中使用tf.keras
。我实现了一个自定义指标,该指标需要大量的计算,如果将其简单地添加到model.compile(..., metrics=[...])
提供的指标列表中,则会减慢训练过程。
我如何让Keras在训练迭代期间跳过指标的计算,而在每个时期结束时在验证数据上进行计算(并打印)?
答案 0 :(得分:2)
为此,您可以在指标计算中创建一个tf.Variable,以确定该计算是否继续进行,然后在使用回调运行测试时对其进行更新。例如
class MyCustomMetric(tf.keras.metrics.Metrics):
def __init__(self, **kwargs):
# Initialise as normal and add flag variable for when to run computation
super(MyCustomMetric, self).__init__(**kwargs)
self.metric_variable = self.add_weight(name='metric_varaible', initializer='zeros')
self.update_metric = tf.Variable(False)
def update_state(self, y_true, y_pred, sample_weight=None):
# Use conditional to determine if computation is done
if self.update_metric:
# run computation
self.metric_variable.assign_add(computation_result)
def result(self):
return self.metric_variable
def reset_states(self):
self.metric_variable.assign(0.)
class ToggleMetrics(tf.keras.callbacks.Callback):
'''On test begin (i.e. when evaluate() is called or
validation data is run during fit()) toggle metric flag '''
def on_test_begin(self, logs):
for metric in self.model.metrics:
if 'MyCustomMetric' in metric.name:
metric.on.assign(True)
def on_test_end(self, logs):
for metric in self.model.metrics:
if 'MyCustomMetric' in metric.name:
metric.on.assign(False)