ValueError:预期的2D数组,但改为1D数组:array = [-2.84130724e-06 2.24336206e-06 7.59608733e-06 1.09044276e-05

时间:2019-06-27 14:32:25

标签: python-3.x machine-learning word2vec cosine-similarity

我正在使用word2vec建立模型。训练模型后,我使用了余弦相似度。但我收到以下错误。我正在使用python 3我使用的代码如下:

import numpy as np
from sklearn.metrics.pairwise import cosine_distances
cos_dist =[]
#cos_dist =[cos_dist]
#cos_dist = np.array(cos_dist).reshape(1, -1)
for vec in data[:-1]:
    cos_dist.append(float(cosine_distances(vec,data[-1])))
    #cos_dist = np.append(cos_dist, 
[float(cosine_distances(vec,data[-1]))])


ps = PorterStemmer()
key_list =[]

for j in jd[:-1]:
    key = ''
    w = set()
    for word in keywords(j).split('\n'):
        w.add(ps.stem(word))
    for x in w:
        key += '{} '.format(x)
    key_list.append(key)





summary = pd.DataFrame({
        'Company': companies,
        'Postition': positions,
        'Cosine Distances': cos_dist,
        'Keywords': key_list,
        'Job Description': jd[:-1]
    })
z =summary.sort('Cosine Distances', ascending=False)
z.to_csv('Summaryimproved.csv',encoding="utf-8")


#z= z.reshape(1, -1)

我收到以下错误。如果需要其他详细信息,请告诉。

~/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in 
check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, 
force_all_finite, ensure_2d, allow_nd, ensure_min_samples, 
ensure_min_features, warn_on_dtype, estimator)
    519                     "Reshape your data either using 
array.reshape(-1, 1) if "
    520                     "your data has a single feature or 
array.reshape(1, -1) "
--> 521                     "if it contains a single 
sample.".format(array))
    522 
    523         # in the future np.flexible dtypes will be handled like 
object dtypes

ValueError: Expected 2D array, got 1D array instead:
array=[-2.84130724e-06  2.24336206e-06  7.59608733e-06  1.09044276e-05

0 个答案:

没有答案