我正在尝试学习scikit但是当我试图运行这个简单的例子时,我得到以下错误。错误也说
使用array.reshape(-1,1)重塑数据 ValueError:预期的2D数组,改为获得1D数组:
但我不知道我在哪里实现它。
以下是我的代码
from sklearn.linear_model import LinearRegression
# Training data
X = [[6], [8], [10], [14],[18]]
y = [[7], [9], [13], [17.5], [18]]
# Create and fit the model
model = LinearRegression()
model.fit(X, y)
print 'A 12" pizza should cost: $%.2f' % model.predict([12])[0]
以下是完整的错误 -
ValueErrorTraceback (most recent call last)
<ipython-input-4-20775a37bc05> in <module>()
6 model = LinearRegression()
7 model.fit(X, y)
----> 8 print 'A 12" pizza should cost: $%.2f' % model.predict([12])[0]
/home/atif/anaconda2/lib/python2.7/site-packages/sklearn/linear_model/base.pyc in predict(self, X)
254 Returns predicted values.
255 """
--> 256 return self._decision_function(X)
257
258 _preprocess_data = staticmethod(_preprocess_data)
/home/atif/anaconda2/lib/python2.7/site-packages/sklearn/linear_model/base.pyc in _decision_function(self, X)
237 check_is_fitted(self, "coef_")
238
--> 239 X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
240 return safe_sparse_dot(X, self.coef_.T,
241 dense_output=True) + self.intercept_
/home/atif/anaconda2/lib/python2.7/site-packages/sklearn/utils/validation.pyc in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
439 "Reshape your data either using array.reshape(-1, 1) if "
440 "your data has a single feature or array.reshape(1, -1) "
--> 441 "if it contains a single sample.".format(array))
442 array = np.atleast_2d(array)
443 # To ensure that array flags are maintained
ValueError: Expected 2D array, got 1D array instead:
array=[12].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
答案 0 :(得分:2)
更改此
model.predict([12])[0]
为:
model.predict([[12]])[0]
注意第二对方括号。对于scikit,X应为2-d。