我想在黑白图像上训练我的TensorFlow object_detection模型,因为我要检测的对象不需要颜色。但是,当我在黑白图像上训练模型时,每当尝试使用适应的图像测试脚本对其进行测试时,都会出现以下错误: ValueError:无法为张量为'(?,?,?,3)'的张量'image_tensor:0'输入形状(1,1080,1920)的值
我不能说太多,但是我的模型应该基于ssd_mobilenet_v1_coco_2018_01_28来检测管道上的变形。大多数变形是通过改变形状从视觉上检测到的,这就是为什么颜色只会妨碍物体检测过程的原因。 (至少我认为是这样,对我来说,仅检测形状会提高准确性。)
TensorBoard模型图
我尝试将图像重塑为(1,1080,1920,3),1080x1920是我的图像分辨率。
代码如下:
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# # Detection
# In[18]:
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = FLAGS.image_path
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'img ({}).jpeg'.format(i)) for i in range(1, len(os.listdir(FLAGS.image_path))) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (24, 16)
# In[ ]:
# In[19]:
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[1], image.shape[2])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: image})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.int64)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
# In[20]:
for image_path in TEST_IMAGE_PATHS:
print('Showing image')
#image = Image.open(image_path)
image_np = cv2.imread(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) #This line and the one above make it work with color images
#image_np = cv2.imread(image_path, cv2.COLOR_BGR2GRAY) #This line makes it break
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
#image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
#plt.figure(figsize=IMAGE_SIZE)
#plt.imshow(image_np)
cv2.imshow('Image', image_np)
cv2.waitKey(0)
这是整个错误:
Traceback (most recent call last):
File "image.py", line 212, in <module>
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)
File "image.py", line 185, in run_inference_for_single_image
feed_dict={image_tensor: image})
File "C:\Users\Charles.averill\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 950, in run
run_metadata_ptr)
File "C:\Users\Charles.averill\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1149, in _run
str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (1, 1080, 1920) for Tensor 'image_tensor:0', which has shape '(?, ?, ?, 3)'
为什么会这样?我似乎无法从互联网上找到答案。
答案 0 :(得分:0)
您的输入图像是灰度的,因此在运行模型时应进行适当的更改。看一下这段代码:
for image_path in TEST_IMAGE_PATHS:
print('Showing image')
#image = Image.open(image_path)
image_np = cv2.imread(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) #This line and the one above make it work with color images
您输入的图片不是BGR格式,因此您无法像在此处的代码中那样将其转换为RGB:
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
通过
替换上面的代码for image_path in TEST_IMAGE_PATHS:
print('Showing image')
#image = Image.open(image_path)
image_np = cv2.imread(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)