带有可迭代项的字典到熊猫的字典通过可迭代项的索引具有多索引的数据框

时间:2019-06-27 12:08:46

标签: python pandas multi-index

我想要字典中的多索引熊猫DataFrame。内部字典包含相同长度的列表/ numpy数组。

x = {'a': {'x': [0, 1, 2], 'y': [1 ,2 ,3]},
     'b': {'x': [4, 6, 8], 'y': [9, 8, 7]}}
some_function(x)
=>
          x      y  <- first index
      0 1 2  0 1 2  <- second index
    a 0 1 2  1 2 3
    b 4 6 8  9 8 7

这是我已经尝试过的方法,但是有没有更有效的方法?只喜欢大熊猫吗?还是有熊猫功能可以解决这个问题?

def dict_of_dicts_of_collections_to_multiindex_df(dict_of_dicts_of_collections):

    x = dict_of_dicts_of_collections

    result = {}

    for outer_key, intermediate_dict in x.items():
        result[outer_key] = {}

        for intermediate_key, collection in intermediate_dict.items():
            try:
                for i, e in enumerate(collection):
                    result[outer_key][(intermediate_key, i)] = e
            except TypeError:
                pass

    return pd.DataFrame(result).T

2 个答案:

答案 0 :(得分:1)

您是否考虑过进行逆向工程?我的意思是建立一个多索引数据框并检查当您print(df.to_dict())时看起来是什么样子。使用此answer的第一部分,我们可以将输出作为您想要的输出,

import pandas as pd
data = [[0, 1, 2, 1 ,2 ,3],
        [4, 6, 8, 9, 8, 7]]

df = pd.DataFrame(data)
df.colums =  pd.MultiIndex.from_product([['x','y'], [0,1,2]])
df.index = ['a', 'b']

print(df.to_dict())

{('x', 0): {'a': 0, 'b': 4},
 ('x', 1): {'a': 1, 'b': 6},
 ('x', 2): {'a': 2, 'b': 8},
 ('y', 0): {'a': 1, 'b': 9},
 ('y', 1): {'a': 2, 'b': 8},
 ('y', 2): {'a': 3, 'b': 7}}

因此,如果您可以将数据作为两个列表,则可以使用pd.MultiIndex.from_product技巧。

否则

import pandas as pd
data = {'a': {'x': [0, 1, 2], 'y': [1 ,2 ,3]},
        'b': {'x': [4, 6, 8], 'y': [9, 8, 7]}}

df = pd.DataFrame(data).T

# you obeserve that expand list to columns
df["x"].apply(pd.Series)

# then using this for every column
# and again pd.MultiIndex.from_product
# gives you the desired output
cols = df.columns
df = pd.concat([df[col].apply(pd.Series) for col in cols], axis=1)
df.columns = pd.MultiIndex.from_product([cols, [0,1,2]])

答案 1 :(得分:1)

我针对此问题创建了两种替代方法,并对结果计时。还包括其他答案以及原始功能。

from copy import deepcopy
import pandas as pd
from collections import defaultdict
import numpy as np


x = {'a': {'x': [0, 1, 2], 'y': [1 ,2 ,3]},
     'b': {'x': [4, 6, 8], 'y': [9, 8, 7]}}


test = deepcopy(x)
for i in range(1000):
    test.update({f'a_{i}':test['a']})

test2 = {k:{key: val*300 for key, val in v.items()} for k, v in x.items()}
print(len(test2['a']['x']))
for i in range(1000):
    test2.update({f'a_{i}':test2['a']})

def dict_of_dicts_of_collections_to_multiindex_df(dict_of_dicts_of_collections):
    x = dict_of_dicts_of_collections
    result = {}
    for outer_key, intermediate_dict in x.items():
        result[outer_key] = {}
        for intermediate_key, collection in intermediate_dict.items():
            try:
                for i, e in enumerate(collection):
                    result[outer_key][(intermediate_key, i)] = e
            except TypeError:
                pass
    return pd.DataFrame(result).T


def out_from_other_answer(data):
    df = pd.DataFrame(data).T    
    cols = df.columns
    df = pd.concat([df[col].apply(pd.Series) for col in cols], axis=1)
    #tweaked to  avoid hardcoding [0, 1, 2]
    df.columns = pd.MultiIndex.from_product([cols, range(len(df.columns)//len(cols))])
    return df

def out2(dict_of_dicts):
    df = pd.DataFrame(list(dict_of_dicts.values()))
    out_df = pd.concat([pd.DataFrame(df[col].values.tolist())
                        for col in df.columns
                        ],
                        axis=1,
                        keys=df.columns,
                        )
    out_df.index = dict_of_dicts.keys()
    return out_df

def out3(data):
    temp = defaultdict(list)
    for d in list(data.values()):
        for k, v in d.items():
            temp[k].append(v)
    out = pd.concat([pd.DataFrame(v) for v in temp.values()], axis=1, keys=temp.keys())
    out.index = data.keys()
    return out

让我们看看结果。 带有小数据x。

%timeit dict_of_dicts_of_collections_to_multiindex_df(x)
%timeit out_from_other_answer(x)
%timeit out2(x)
%timeit out3(x)
1.63 ms ± 102 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
4.49 ms ± 492 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.44 ms ± 102 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
1.49 ms ± 98.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

具有更多行但测试相同列。

%timeit dict_of_dicts_of_collections_to_multiindex_df(test)
%timeit out_from_other_answer(test)
%timeit out2(test)
%timeit out3(test)
70.3 ms ± 10.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
494 ms ± 40.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
4.81 ms ± 185 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.37 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

具有更多行和更多列的test2

%timeit dict_of_dicts_of_collections_to_multiindex_df(test2)
%timeit out_from_other_answer(test2)
%timeit out2(test2)
%timeit out3(test2)
1.24 s ± 19.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.1 s ± 63.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
590 ms ± 39.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
598 ms ± 44 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

似乎每种解决方案在增加数据维度方面都受到不同的影响。总体看来,out3是最好的选择。本质上,最好在处理输入数据之前先更改其布局。