我有一个字典词典:
{'user':{movie:rating} }
例如,
{Jill': {'Avenger: Age of Ultron': 7.0,
'Django Unchained': 6.5,
'Gone Girl': 9.0,
'Kill the Messenger': 8.0}
'Toby': {'Avenger: Age of Ultron': 8.5,
'Django Unchained': 9.0,
'Zoolander': 2.0}}
我想将这个dicts的dict转换为pandas数据帧,第1列是用户名,其他列是电影评级,即
user Gone_Girl Horrible_Bosses_2 Django_Unchained Zoolander etc. \
但是,有些用户没有为电影评分,因此这些电影不包含在该用户键()的值()中。在这些情况下,用NaN填充条目会很好。
截至目前,我遍历密钥,填写列表,然后使用此列表创建数据框:
data=[]
for i,key in enumerate(movie_user_preferences.keys() ):
try:
data.append((key
,movie_user_preferences[key]['Gone Girl']
,movie_user_preferences[key]['Horrible Bosses 2']
,movie_user_preferences[key]['Django Unchained']
,movie_user_preferences[key]['Zoolander']
,movie_user_preferences[key]['Avenger: Age of Ultron']
,movie_user_preferences[key]['Kill the Messenger']))
# if no entry, skip
except:
pass
df=pd.DataFrame(data=data,columns=['user','Gone_Girl','Horrible_Bosses_2','Django_Unchained','Zoolander','Avenger_Age_of_Ultron','Kill_the_Messenger'])
但这只给了我一个用户评估集合中所有电影的数据框。
我的目标是通过迭代电影标签(而不是上面显示的暴力方法)附加到数据列表,其次,创建一个包含所有用户的数据框,并将空值放在不包含所有用户的元素中有电影评级。
答案 0 :(得分:40)
您可以将dict的dict传递给DataFrame构造函数:
In [11]: d = {'Jill': {'Django Unchained': 6.5, 'Gone Girl': 9.0, 'Kill the Messenger': 8.0, 'Avenger: Age of Ultron': 7.0}, 'Toby': {'Django Unchained': 9.0, 'Zoolander': 2.0, 'Avenger: Age of Ultron': 8.5}}
In [12]: pd.DataFrame(d)
Out[12]:
Jill Toby
Avenger: Age of Ultron 7.0 8.5
Django Unchained 6.5 9.0
Gone Girl 9.0 NaN
Kill the Messenger 8.0 NaN
Zoolander NaN 2.0
或使用from_dict
方法:
In [13]: pd.DataFrame.from_dict(d)
Out[13]:
Jill Toby
Avenger: Age of Ultron 7.0 8.5
Django Unchained 6.5 9.0
Gone Girl 9.0 NaN
Kill the Messenger 8.0 NaN
Zoolander NaN 2.0
In [14]: pd.DataFrame.from_dict(d, orient='index')
Out[14]:
Django Unchained Gone Girl Kill the Messenger Avenger: Age of Ultron Zoolander
Jill 6.5 9 8 7.0 NaN
Toby 9.0 NaN NaN 8.5 2
答案 1 :(得分:0)
这种蛮力方法似乎也有效,但在我看来,迭代电影标签仍然会更加强大。
data=[]
for i,key in enumerate(movie_user_preferences.keys() ):
try:
data.append((key
,movie_user_preferences[key]['Gone Girl'] if 'Gone Girl' in movie_user_preferences[key] else 'NaN'
,movie_user_preferences[key]['Horrible Bosses 2'] if 'Horrible Bosses 2' in movie_user_preferences[key] else 'NaN'
,movie_user_preferences[key]['Django Unchained'] if 'Django Unchained' in movie_user_preferences[key] else 'NaN'
,movie_user_preferences[key]['Zoolander'] if 'Zoolander' in movie_user_preferences[key] else 'NaN'
,movie_user_preferences[key]['Avenger: Age of Ultron'] if 'Avenger: Age of Ultron' in movie_user_preferences[key] else 'NaN'
,movie_user_preferences[key]['Kill the Messenger'] if 'Kill the Messenger' in movie_user_preferences[key] else 'NaN' ))
# if no entry, skip
except:
pass
user Gone_Girl Horrible_Bosses_2 Django_Unchained Zoolander \
0 Sam 6 3 7.5 7
1 Max 10 6 7.0 10
2 Robert NaN 5 7.0 9
3 Toby NaN NaN 9.0 2
4 Julia 6.5 NaN 6.0 6.5
5 William 7 4 8.0 4
6 Jill 9 NaN 6.5 NaN
Avenger_Age_of_Ultron Kill_the_Messenger
0 10.0 5.5
1 7.0 5
2 8.0 9
3 8.5 NaN
4 10.0 6
5 6.0 6.5
6 7.0 8