从头启动Microsoft SQL Server(在Linux上)容器之后...
$ docker run -d -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=pa$$word' \
-p 1433:1433 -d microsoft/mssql-server-linux
...正在创建Docker checkpoint ...
$ docker checkpoint create mssql cp1
...失败:
Error response from daemon: Cannot checkpoint container mssql:
failed to read checkpoint reader:
open /var/lib/docker/containers/f2eb8d17e95630332bbeab887b9e03a1b91efcd8907f69b82805a788331316e2/checkpoints/cp1/cgroup.img:
no such file or directory
这是在Ubuntu 18.04上安装的CRIU,并启用了实验模式:
$ docker version
Client:
Version: 18.09.6
API version: 1.39
Go version: go1.10.8
Git commit: 481bc77
Built: Sat May 4 02:35:57 2019
OS/Arch: linux/amd64
Experimental: false
Server: Docker Engine - Community
Engine:
Version: 18.09.6
API version: 1.39 (minimum version 1.12)
Go version: go1.10.8
Git commit: 481bc77
Built: Sat May 4 01:59:36 2019
OS/Arch: linux/amd64
Experimental: true
检查其他容器是否正常,只能与SQL映像配合使用。
我是否遗漏了任何东西,或者可能只是docker checkpoint
的一个错误(目前是实验功能)?
答案 0 :(得分:0)
从Docker import psycopg2
import sys, os
import numpy as np
import pandas as pd
import creds as creds
import pandas.io.sql as psql
## ****** LOAD PSQL DATABASE ***** ##
# Sets up a connection to the postgres server.
conn_string = "host="+ creds.PGHOST +" port="+ "5432" +" dbname="+ creds.PGDATABASE +" user=" + creds.PGUSER \
+" password="+ creds.PGPASSWORD
conn=psycopg2.connect(conn_string)
print("Connected!")
# Create a cursor object
cursor = conn.cursor()
sql_command = "SELECT * FROM {};".format(str("events"))
print (sql_command)
# Load the data
data = pd.read_sql(sql_command, conn)
# taking a subet of the data until algorithm is perfected.
# seed = np.random.seed(42)
# n = data.shape[0]
# ix = np.random.choice(n,10000)
# df_tmp = data.iloc[ix]
# Taking the source and destination and combining it into a list in another column
# df_tmp['accounts'] = df_tmp.apply(lambda x: [x['source'], x['destination']], axis=1)
data['accounts'] = data.apply(lambda x: (x['source'], x['destination']), axis=1)
data['accounts_acc'] = data['accounts'].cumsum().apply(set)
开始,这似乎不再是问题。