我正在使用GAN教程中的代码在Tensorflow中生成MNIST数字。
(此处链接:https://www.tensorflow.org/beta/tutorials/generative/dcgan)
当前,程序陷入了无限的训练循环。我将训练数据集设置为仅一张图像,并设置epoch =1。我在循环中插入了打印语句。在train()函数中,它仅打印a和b,但不打印c,这意味着它在第二个for循环中陷入了无限循环。
我在这里加载,随机播放和批处理数据(训练数据集仅是用于测试目的的一张图像)
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
train_images = train_images[0:1,:,:,:]
print(train_images.shape)
BUFFER_SIZE = 1
BATCH_SIZE = 1
# Batch and shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
print(train_dataset)
这些是定义生成器和鉴别器模型损耗的函数
def make_generator_model():
...
return model
generator = make_generator_model()
noise = np.random.normal(size=(1, 100))
generated_image = generator.predict(noise)
def make_discriminator_model():
...
return model
discriminator = make_discriminator_model()
decision = discriminator.predict(generated_image)
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
...
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
这些是训练功能:
EPOCHS = 1
noise_dim = 100
seed = tf.random.normal([num_examples_to_generate, noise_dim])
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
print(images.shape)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
for image_batch in dataset: #stuck in an infinite loop
print('a')
train_step(image_batch)
print('b')
print('c')
# Produce images for the GIF as we go
display.clear_output(wait=True)
generate_and_save_images(generator,epoch + 1,seed)
print('d')
# Save the model every 1 epochs
if (epoch + 1) % 1 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
# Generate after the final epoch
display.clear_output(wait=True)
generate_and_save_images(generator,epochs,seed)
def generate_and_save_images(model, epoch, test_input):
...
train(train_dataset, EPOCHS)
答案 0 :(得分:0)
解决了。原来我使用的是tensorflow 1.14,但是代码是用tensorflow 2.0编写的。在tf 1.x中,我需要一个迭代器来摆脱无限循环。
答案 1 :(得分:0)
您需要手动中断循环,否则它将无限期运行。来自documentation:
for e in range(epochs):
print('Epoch', e)
batches = 0
for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
model.fit(x_batch, y_batch)
batches += 1
if batches >= len(x_train) / 32: # break loop here
# we need to break the loop by hand because
# the generator loops indefinitely
break