我最近一直在研究项目,该项目预测幻想英超联赛中最优秀的球队。在成功分析了不同的特征和参数之后,由于以下“ TypeError:'Series'对象易变,因此无法进行哈希处理”,我陷入了困境
我已经完成了代码的第一部分的编写,但是收到了一个错误。我在网上搜索,但找不到解决方案。解决方案之一说您不能将序列附加到列表中。真的吗?以及相同的可能解决方案是什么。我现在走的太远了,我真的很想把它做好。
def my_team (budget = 100, star_player_limit = 3, gk = 2, df = 5, mid = 5, fwd = 3 ): # Pass constraints to function
team = [ ] # List of team to be returned
star_position = [ ] # list containing position of starplayer
star_player_limit = star_player_limit
budget = budget
injured = dataset2.loc[(dataset2.loc[:,"Status"] == 'injured'),:] # Keeping a check of injury status
positions = {"GKP":gk,"DEF":df,"MID":mid,"FWD":fwd} # Dict accounting for no. of postions left to fill
for ind in Top_points.index: # Looping through the dataframe of players
player = Top_points.loc[ind] # Row of Dataframe one at a time
star_position.append(player.Position) # Checking position of star player
if len(team) < star_player_limit and player not in injured and budget > player.Cost and positions[player.Position] > 0 and player.Position not in star_position:
team.append(player)
budget -= player.Cost
positions[player.Position] -= 1
return team
my_team()
运行代码后,出现以下错误:TypeError: 'Series' objects are mutable, thus they cannot be hashed
。
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-150-a7d781e901c6> in <module>()
----> 1 my_team()
<ipython-input-149-ec17dbd9b9ba> in my_team(budget, star_player_limit, gk, df, mid, fwd)
9 player = Top_points.loc[ind]
10 star_position.append(player.Position)
---> 11 if len(team) < star_player_limit and player not in injured and budget > player.Cost and positions[player.Position] > 0 and player.Position not in star_position:
12 team.append(player)
13 budget -= player.Cost
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __contains__(self, key)
1517 def __contains__(self, key):
1518 """True if the key is in the info axis"""
-> 1519 return key in self._info_axis
1520
1521 @property
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in __contains__(self, key)
2018 @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs)
2019 def __contains__(self, key):
-> 2020 hash(key)
2021 try:
2022 return key in self._engine
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __hash__(self)
1487 def __hash__(self):
1488 raise TypeError('{0!r} objects are mutable, thus they cannot be'
-> 1489 ' hashed'.format(self.__class__.__name__))
1490
1491 def __iter__(self):
TypeError: 'Series' objects are mutable, thus they cannot be hashed
答案 0 :(得分:0)
熊猫框架是可变的。因此,它们不能用作字典的键或集合的元素。
查看第一个堆栈跟踪中的第11行。我已经将其重新设置格式以便于阅读。
if (len(team) < star_player_limit and
player not in injured and
budget > player.Cost and
positions[player.Position] > 0 and
player.Position not in star_position):
我们在这里有一个player not in injured
子句。前者定义为
player = Top_points.loc[ind]
我想它的类型是Series
。
现在,我们有了处理__contains__
运算符的in
方法的第二个堆栈跟踪。在其中,我假设self
是injured
,而key
是player
。
实际上,它不能hash(player)
。
(它不能是第二个in
子句,因为start_position
是一个普通的Python列表,而__contains__
的堆栈跟踪来自熊猫。)
我将从player
中提取名称或其他ID,并在injured
中进行搜索;也许我会一路把injured
变成一组名字。