我正在考虑熊猫数据框。我想找到一种创建第二个Dataframe的有效方法。
import pandas as pd
data = {"column":[0,1,2,0,1,2,0]}
df = pd.DataFrame(data)
column
0
1
2
0
1
2
0
column0 column1 column2
true false false
false true false
false false true
true false false
false true false
false false true
true false false
答案 0 :(得分:7)
这是一个get_dummies
问题,但您还需要指定dtype=bool
才能获得一列布尔值:
pd.get_dummies(df['column'], dtype=bool)
0 1 2
0 True False False
1 False True False
2 False False True
3 True False False
4 False True False
5 False False True
6 True False False
pd.get_dummies(df['column'], dtype=bool).dtypes
0 bool
1 bool
2 bool
dtype: object
# carbon copy of expected output
dummies = pd.get_dummies(df['column'], dtype=bool)
dummies[:] = np.where(pd.get_dummies(df['column'], dtype=bool), 'true', 'false')
dummies.add_prefix('column')
column0 column1 column2
0 true false false
1 false true false
2 false false true
3 true false false
4 false true false
5 false false true
6 true false false
答案 1 :(得分:2)
我还将get_dummies
用作cs95。但是,我使用str.get_dummies
并在column
之前加上单词get_dummies
。最后,replace
('column'+df.column.astype(str)).str.get_dummies().replace({1:'true', 0:'false'})
Out[2164]:
column0 column1 column2
0 true false false
1 false true false
2 false false true
3 true false false
4 false true false
5 false false true
6 true false false
答案 2 :(得分:1)
factorize
和分片分配i, u = pd.factorize(df.column)
a = np.empty((len(i), len(u)), '<U5')
a.fill('false')
a[np.arange(len(i)), i] = 'true'
pd.DataFrame(a).add_prefix('column')
column0 column1 column2
0 true false false
1 false true false
2 false false true
3 true false false
4 false true false
5 false false true
6 true false false