如何从包含列表的pandas列进行单热编码?

时间:2017-07-25 19:53:56

标签: python pandas numpy scikit-learn sklearn-pandas

我想将包含元素列表的pandas列分解为多个列,因为它们是唯一的元素,即one-hot-encode它们(值1表示存在于一行中的给定元素和0在缺席的情况下)。

例如,采用数据框 df

Col1   Col2         Col3
 C      33     [Apple, Orange, Banana]
 A      2.5    [Apple, Grape]
 B      42     [Banana] 

我想将其转换为:

df

Col1   Col2   Apple   Orange   Banana   Grape
 C      33     1        1        1       0
 A      2.5    1        0        0       1
 B      42     0        0        1       0

我如何使用pandas / sklearn来实现这一目标?

6 个答案:

答案 0 :(得分:38)

我们也可以使用sklearn.preprocessing.MultiLabelBinarizer

UITableViewController

结果:

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer()
df = df.join(pd.DataFrame(mlb.fit_transform(df.pop('Col3')),
                          columns=mlb.classes_,
                          index=df.index))

答案 1 :(得分:25)

选项1
简答
pir_slow

df.drop('Col3', 1).join(df.Col3.str.join('|').str.get_dummies())

  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0

选项2
快速回答
pir_fast

v = df.Col3.values
l = [len(x) for x in v.tolist()]
f, u = pd.factorize(np.concatenate(v))
n, m = len(v), u.size
i = np.arange(n).repeat(l)

dummies = pd.DataFrame(
    np.bincount(i * m + f, minlength=n * m).reshape(n, m),
    df.index, u
)

df.drop('Col3', 1).join(dummies)

  Col1  Col2  Apple  Orange  Banana  Grape
0    C  33.0      1       1       1      0
1    A   2.5      1       0       0      1
2    B  42.0      0       0       1      0

选项3
pir_alt1

df.drop('Col3', 1).join(
    pd.get_dummies(
        pd.DataFrame(df.Col3.tolist()).stack()
    ).astype(int).sum(level=0)
)

  Col1  Col2  Apple  Orange  Banana  Grape
0    C  33.0      1       1       1      0
1    A   2.5      1       0       0      1
2    B  42.0      0       0       1      0

时间安排
以下代码

enter image description here

def maxu(df):
    mlb = MultiLabelBinarizer()
    d = pd.DataFrame(
        mlb.fit_transform(df.Col3.values)
        , df.index, mlb.classes_
    )
    return df.drop('Col3', 1).join(d)


def bos(df):
    return df.drop('Col3', 1).assign(**pd.get_dummies(df.Col3.apply(lambda x:pd.Series(x)).stack().reset_index(level=1,drop=True)).sum(level=0))

def psi(df):
    return pd.concat([
        df.drop("Col3", 1),
        df.Col3.apply(lambda x: pd.Series(1, x)).fillna(0)
    ], axis=1)

def alex(df):
    return df[['Col1', 'Col2']].assign(**{fruit: [1 if fruit in cell else 0 for cell in df.Col3] 
                                       for fruit in set(fruit for fruits in df.Col3 
                                                        for fruit in fruits)})

def pir_slow(df):
    return df.drop('Col3', 1).join(df.Col3.str.join('|').str.get_dummies())

def pir_alt1(df):
    return df.drop('Col3', 1).join(pd.get_dummies(pd.DataFrame(df.Col3.tolist()).stack()).astype(int).sum(level=0))

def pir_fast(df):
    v = df.Col3.values
    l = [len(x) for x in v.tolist()]
    f, u = pd.factorize(np.concatenate(v))
    n, m = len(v), u.size
    i = np.arange(n).repeat(l)

    dummies = pd.DataFrame(
        np.bincount(i * m + f, minlength=n * m).reshape(n, m),
        df.index, u
    )

    return df.drop('Col3', 1).join(dummies)

results = pd.DataFrame(
    index=(1, 3, 10, 30, 100, 300, 1000, 3000),
    columns='maxu bos psi alex pir_slow pir_fast pir_alt1'.split()
)

for i in results.index:
    d = pd.concat([df] * i, ignore_index=True)
    for j in results.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        results.set_value(i, j, timeit(stmt, setp, number=10))

答案 2 :(得分:6)

使用get_dummies

df_out = df.assign(**pd.get_dummies(df.Col3.apply(lambda x:pd.Series(x)).stack().reset_index(level=1,drop=True)).sum(level=0))

输出:

  Col1  Col2                     Col3  Apple  Banana  Grape  Orange
0    C  33.0  [Apple, Orange, Banana]      1       1      0       1
1    A   2.5           [Apple, Grape]      1       0      1       0
2    B  42.0                 [Banana]      0       1      0       0

清理栏:

df_out.drop('Col3',axis=1)

输出:

  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0

答案 3 :(得分:5)

您可以使用std::shared_ptr<VOID> InitializeFromDisk(const std::wstring& wsTempPath, char *pFileBase) { ... auto pMappedFile = MapViewOfFile(hFileMapping, FILE_MAP_READ, 0, 0, 0); if (pMappedFile == nullptr) { auto lastError = GetLastError(); throw system_error(lastError, system_category()); } return shared_ptr<VOID>(pMappedFile, [](auto p) { UnmapViewOfFile(p); }); } 循环遍历Col3并将每个元素转换为一个系列,其中列表作为索引,成为结果数据框中的标题:

apply

答案 4 :(得分:5)

您可以使用set comprehension在Col3中获取所有独特的水果,如下所示:

set(fruit for fruits in df.Col3 for fruit in fruits)

使用词典理解,您可以浏览每个独特的水果,看看它是否在列中。

>>> df[['Col1', 'Col2']].assign(**{fruit: [1 if fruit in cell else 0 for cell in df.Col3] 
                                   for fruit in set(fruit for fruits in df.Col3 
                                                    for fruit in fruits)})
  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0

<强>计时

dfs = pd.concat([df] * 1000)  # Use 3,000 rows in the dataframe.

# Solution 1 by @Alexander (me)
%%timeit -n 1000 
dfs[['Col1', 'Col2']].assign(**{fruit: [1 if fruit in cell else 0 for cell in dfs.Col3] 
                                for fruit in set(fruit for fruits in dfs.Col3 for fruit in fruits)})
# 10 loops, best of 3: 4.57 ms per loop

# Solution 2 by @Psidom
%%timeit -n 1000
pd.concat([
        dfs.drop("Col3", 1),
        dfs.Col3.apply(lambda x: pd.Series(1, x)).fillna(0)
    ], axis=1)
# 10 loops, best of 3: 748 ms per loop

# Solution 3 by @MaxU
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()

%%timeit -n 10 
dfs.join(pd.DataFrame(mlb.fit_transform(dfs.Col3),
                          columns=mlb.classes_,
                          index=dfs.index))
# 10 loops, best of 3: 283 ms per loop

# Solution 4 by @ScottBoston
%%timeit -n 10
df_out = dfs.assign(**pd.get_dummies(dfs.Col3.apply(lambda x:pd.Series(x)).stack().reset_index(level=1,drop=True)).sum(level=0))
# 10 loops, best of 3: 512 ms per loop

But...
>>> print(df_out.head())
  Col1  Col2                     Col3  Apple  Banana  Grape  Orange
0    C  33.0  [Apple, Orange, Banana]   1000    1000      0    1000
1    A   2.5           [Apple, Grape]   1000       0   1000       0
2    B  42.0                 [Banana]      0    1000      0       0
0    C  33.0  [Apple, Orange, Banana]   1000    1000      0    1000
1    A   2.5           [Apple, Grape]   1000       0   1000       0

答案 5 :(得分:0)

您可以使用功能explode(0.25.0版中的新功能)和crosstab

df1 = df['Col3'].explode()
df[['Col1', 'Col2']].join(pd.crosstab(df1.index, df1))

输出:

  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0