我阅读了一个excel文件,并将每个标签页另存为熊猫数据框。
import pandas as pd
xla = pd.ExcelFile("file_name.xlsx")
kl=xla.sheet_names
hf_list=[]
for i in range(len(kl)):
hf_list.append(pd.read_excel(xla, i,index_col=0))
我打算计算列表中每个数据帧的排名,因此编写了以下代码。
def score_card(raw_list):
score_list=[]
for i in range(len(raw_list)):
score_list.append(raw_list[i].rank(axis=1))
return score_list
score_list=score_card(hf_list)
我想知道是否有一种方法可以对代码进行矢量化处理,并避免score_card函数中的for循环(也可以读取Excel文件)。 预先感谢您的宝贵时间。
答案 0 :(得分:2)
如果在read_excel
中使用参数sheet_name = None
,则为每个工作表名称获取DataFrame的顺序:
dfs = pd.read_excel("file_name.xlsx", sheet_name = None, index_col=0)
然后使用列表理解:
score_list = [v.rank(axis=1) for k, v in dfs.items()]
或使用concat
创建大型DataFrame:
df = pd.concat(dfs.values())