在熊猫中矢量化一个函数

时间:2014-12-20 00:39:03

标签: python pandas dataframe

我有一个包含纬度/经度坐标列表的数据框:

d = {'Provider ID': {0: '10001',
  1: '10005',
  2: '10006',
  3: '10007',
  4: '10008',
  5: '10011',
  6: '10012',
  7: '10016',
  8: '10018',
  9: '10019'},
 'latitude': {0: '31.215379379000467',
  1: '34.22133455500045',
  2: '34.795039606000444',
  3: '31.292159523000464',
  4: '31.69311635000048',
  5: '33.595265517000485',
  6: '34.44060759100046',
  7: '33.254429322000476',
  8: '33.50314015000049',
  9: '34.74643089500046'},
 'longitude': {0: ' -85.36146587999968',
  1: ' -86.15937514799964',
  2: ' -87.68507485299966',
  3: ' -86.25539902199966',
  4: ' -86.26549483099967',
  5: ' -86.66531866799966',
  6: ' -85.75726760699968',
  7: ' -86.81407933399964',
  8: ' -86.80242858299965',
  9: ' -87.69893502799965'}}
df = pd.DataFrame(d)

我的目标是使用hasrsine函数来计算KM中每个项目之间的距离:

from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees)
    """

    # convert decimal degrees to radians 
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 

    # 6367 km is the radius of the Earth
    km = 6367 * c
    return km

我的目标是获取一个类似于下面result_df的数据框,其中值是每个提供者ID之间的距离:

 result_df = pd.DataFrame(columns = df['Provider ID'], index=df['Provider ID'])

我可以循环播放,但速度非常慢。我正在寻找一些帮助,将其转换为矢量化方法:

for first_hospital_coordinates in result_df.columns:
    for second_hospital_coordinates in result_df['Provider ID']:
        if first_hospital_coordinates == 'Provider ID':
            pass
        else:
            L1 = df[df['Provider ID'] == first_hospital_coordinates]['latitude'].astype('float64').values
            O1 = df[df['Provider ID'] == first_hospital_coordinates]['longitude'].astype('float64').values
            L2 = df[df['Provider ID'] == second_hospital_coordinates]['latitude'].astype('float64').values
            O2 = df[df['Provider ID'] == second_hospital_coordinates]['longitude'].astype('float64').values

            distance = haversine(O1, L1, O2, L2)

            crit = result_df['Provider ID'] == second_hospital_coordinates
            result_df.loc[crit, first_hospital_coordinates] = distance

3 个答案:

答案 0 :(得分:5)

要对此代码进行矢量化,您需要对完整的数据帧进行操作,而不是对单个的长度和长度进行操作。我已经尝试过这个。我需要结果df和一个新函数h2,

import numpy as np
def h2(df, p):
    inrad = df.applymap(radians)
    dlon = inrad.longitude-inrad.longitude[p]
    dlat = inrad.latitude-inrad.latitude[p]
    lat1 = pd.Series(index = df.index, data = [df.latitude[p] for i in range(len(df.index))])
    a = np.sin(dlat/2)*np.sin(dlat/2) + np.cos(df.latitude) * np.cos(lat1) * np.sin(dlon/2)**2
    c = 2 * 1/np.sin(np.sqrt(a))
    km = 6367 * c
    return km

df = df.set_index('Provider ID')
df = df.astype(float)
df2 = pd.DataFrame(index = df.index, columns = df.index)
for c in df2.columns:
    df2[c] = h2(df, c)

print (df2)

这应该会产生,(我无法确定我是否有正确答案......我的目标是对代码进行矢量化)

Provider ID         10001         10005         10006         10007  \
Provider ID                                                           
10001                 inf  5.021936e+05  5.270062e+05  1.649088e+06   
10005        5.021936e+05           inf  9.294868e+05  4.985233e+05   
10006        5.270062e+05  9.294868e+05           inf  4.548412e+05   
10007        1.649088e+06  4.985233e+05  4.548412e+05           inf   
10008        1.460299e+06  5.777248e+05  5.246954e+05  3.638231e+06   
10011        6.723581e+05  2.004199e+06  1.027439e+06  6.394402e+05   
10012        4.559090e+05  3.265536e+06  7.573411e+05  4.694125e+05   
10016        7.680036e+05  1.429573e+06  9.105474e+05  7.517467e+05   
10018        7.096548e+05  1.733554e+06  1.020976e+06  6.701920e+05   
10019        5.436342e+05  9.278739e+05  2.891822e+07  4.638858e+05   

Provider ID         10008         10011         10012         10016  \
Provider ID                                                           
10001        1.460299e+06  6.723581e+05  4.559090e+05  7.680036e+05   
10005        5.777248e+05  2.004199e+06  3.265536e+06  1.429573e+06   
10006        5.246954e+05  1.027439e+06  7.573411e+05  9.105474e+05   
10007        3.638231e+06  6.394402e+05  4.694125e+05  7.517467e+05   
10008                 inf  7.766998e+05  5.401081e+05  9.496953e+05   
10011        7.766998e+05           inf  1.341775e+06  4.220911e+06   
10012        5.401081e+05  1.341775e+06           inf  1.119063e+06   
10016        9.496953e+05  4.220911e+06  1.119063e+06           inf   
10018        8.236437e+05  1.242451e+07  1.226941e+06  5.866259e+06   
10019        5.372119e+05  1.051748e+06  7.514774e+05  9.362341e+05   

Provider ID         10018         10019  
Provider ID                              
10001        7.096548e+05  5.436342e+05  
10005        1.733554e+06  9.278739e+05  
10006        1.020976e+06  2.891822e+07  
10007        6.701920e+05  4.638858e+05  
10008        8.236437e+05  5.372119e+05  
10011        1.242451e+07  1.051748e+06  
10012        1.226941e+06  7.514774e+05  
10016        5.866259e+06  9.362341e+05  
10018                 inf  1.048895e+06  
10019        1.048895e+06           inf  

[10 rows x 10 columns]

答案 1 :(得分:3)

你不需要任何花哨的东西,只需要你的功能几个mod。

首先,不要使用math库。如果你正在做真正的数学或科学,你可能会更喜欢numpy。

其次,我们将使用数据框方法applyapply所做的是它需要一个函数并通过它运行每一行(axis = 1)或列(axis = 0),并使用所有返回的值构建一个新的pandas对象。因此,我们需要设置haversine一行数据帧并解压缩值。它变成了:

def haversine(row):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees)
    """
    import numpy as np

    # convert all of the row to radians
    row = np.radians(row)

    # unpack the values for convenience
    lat1 = row['lat1']
    lat2 = row['lat2']
    lon1 = row['lon1']
    lon2 = row['lon2']

    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
    c = 2 * np.arcsin(np.sqrt(a)) 

    # 6367 km is the radius of the Earth
    km = 6367 * c
    return km

好的,现在我们需要让您的数据帧保持良好状态。在你的问题中,一切都是字符串,这对数学不利。所以使用你的变量d,我说:

df = pandas.DataFrame(d).set_index('Provider ID').astype(float)

因此创建了字符串的数据帧,将提供者设置为索引,然后将所有列转换为浮点数,因为我们正在进行数学运算。

现在我们需要使用两组coords创建行。为此,我们将使用shift方法并将结果连接到原始数据框。一下子做到这一切看起来像这样:

df = df.join(df.shift(), lsuffix='1', rsuffix='2')
print(df.head())

                  lat1       lon1       lat2       lon2
Provider ID                                            
10001        31.215379 -85.361466        NaN        NaN
10005        34.221335 -86.159375  31.215379 -85.361466
10006        34.795040 -87.685075  34.221335 -86.159375
10007        31.292160 -86.255399  34.795040 -87.685075
10008        31.693116 -86.265495  31.292160 -86.255399

rsuffixlsuffix是在连接操作期间向列名附加“1”和“2”的内容。

“2”列来自df.shift(),您会注意到它们等于上一行的“1”列。此外,您会看到“2”列的第一行是NaN,因为第一行没有之前的

现在我们可以apply Haversine函数:

distance = df.apply(haversine, axis=1)
print(distance)
Provider ID
10001                 NaN
10005          342.261590
10006          153.567591
10007          411.393751
10008           44.566642
10011          214.661170
10012          125.775583
10016          163.973219
10018           27.659157
10019          160.901128
dtype: float64

答案 2 :(得分:1)

您应该可以使用整个操作。我不太熟悉熊猫,所以我只是使用底层的numpy数组。使用您的数据d

df = pd.DataFrame(d)
df1 = df.astype(float)
a = np.radians(df1.values[:,1:])
# a.shape is 10,2, it contains the Lat/Lon only

# transpose and subtract
# add a new axes so they can be broadcast
diff = a[...,np.newaxis] - a.T
# diff.shape is (10,2,10): dLat is diff[:,0,:], dLon is diff[:,1,:]

b = np.square(np.sin(diff / 2))
# b.shape is (10,2,10): sin^2(dLat/2) is b[:,0,:], sin^2(dLon/2) is b[:,1,:]

# make this term: cos(Lat1) * cos(Lat2)
cos_Lat = np.cos(a[:,0])
c = cos_Lat * cos_Lat[:, np.newaxis]    # shape 10x10

# sin^2(dLon/2) is b[:,1,:]
b[:,1,:] = b[:,1,:] * c
g = b.sum(axis = 1)
h = 6367000 * 2 * np.arcsin((np.sqrt(g)))   # meters

返回pandas.DataFrame

df2 = pd.DataFrame(h, index = df['Provider ID'].values, columns = df['Provider ID'].values)

我没有尝试任何性能测试。有很多中间数组创建正在进行并且它可能很昂贵 - 使用ufuncs的可选输出参数可能会减轻它。

就地操作相同:

df = pd.DataFrame(d)
df_A = df.astype(float)
z = df_A.values[:,1:]

# cos(Lat1) * cos(Lat2)
w = np.cos(z[:,0])
w = w * w[:, np.newaxis]    # w.shape is (10,10)

# sin^2(dLat/2) and sin^2(dLon/2)
np.radians(z, z)
z = z[...,np.newaxis] - z.T
np.divide(z, 2, z)
np.sin(z, z)
np.square(z,z)
# z.shape is now (10,2,10): sin^2(dLat/2) is z[:,0,:], sin^2(dLon/2) is z[:,1,:]

# cos(Lat1) * cos(Lat2) * sin^2(dLon/2)
np.multiply(z[:,1,:], w, z[:,1,:])

# sin^2(dLat/2) + cos(Lat1) * cos(Lat2) * sin^2(dLon/2)
z = z.sum(axis = 1)

np.sqrt(z, z)
np.arcsin(z,z)
np.multiply(z, 6367000 * 2, z)   #meters

df_B = pd.DataFrame(z, index = df['Provider ID'].values, columns = df['Provider ID'].values)