我正在逐步解决这个多元回归问题,但是代码始于
section:#在网站https://towardsdatascience.com/what-makes-a-movie-hit-a-jackpot-learning-from-data-with-multiple-linear-regression-339f6c1a7022上使用一键编码处理分类变量
到目前为止,我已经运行了代码,但不适用于(X)
实际代码:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
# LabelEncoder for a number of columns
class MultiColumnLabelEncoder:
def __init__(self, columns = None):
self.columns = columns # list of column to encode
def fit(self, X, y=None):
return self
def transform(self, X):
'''
Transforms columns of X specified in self.columns using
LabelEncoder(). If no columns specified, transforms all
columns in X.
'''
output = X.copy()
if self.columns is not None:
for col in self.columns:
output[col] = LabelEncoder().fit_transform(output[col])
else:
for colname, col in output.iteritems():
output[colname] = LabelEncoder().fit_transform(col)
return output
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X)
le = MultiColumnLabelEncoder()
X_train_le = le.fit_transform(X)
这是我得到的错误:
Traceback (most recent call last):
File "<ipython-input-63-581cea150670>", line 34, in <module>
X_train_le = le.fit_transform(X)
NameError: name 'X' is not defined
答案 0 :(得分:2)
您的代码不应该工作,因为您在该代码段之前遗漏了她写的40行代码。她之前已经定义了X
。可以从Github获取代码。
#importing the libraries
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
import statsmodels.api as sm
import pyreadr
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import explained_variance_score
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
result = pyreadr.read_r('Movies.RData')# also works for Rds
print(result.keys())
df = pd.DataFrame(result['movies'], columns=result['movies'].keys() )
df.shape
df.shape[0]
df.set_index("title", inplace=True) #setting the index name
df_1 = df.loc[:, ['imdb_rating','genre', 'runtime', 'best_pic_nom',
'top200_box', 'director', 'actor1']]
#Let's also check the column-wise distribution of null values
print(df_1.isnull().values.sum())
print(df_1.isnull().sum())
#Dropping missing values from my dataset
df_1.dropna(how='any', inplace=True)
print(df_1.isnull().values.sum()) #checking for missing values after the dropna()
#Splitting for 2 matrices: independent variables used for prediction and dependent variables (that is predicted)
X = df_1.drop(["imdb_rating", 'runtime'], axis = 1) #Feature Matrix
y = df_1["imdb_rating"] #Dependent Variables