我试图通过以下方式使自定义eval_input_receiver_fn()
传递给tfma.export.export_eval_savedmodel()
:
model = tf.keras.models.load_model('/Users/user/Documents/../model_name.h5')
resnet50 = tf.feature_column.numeric_column('resnet50_input:0')
def receiver_fn():
serialized_tf_example = tf.compat.v1.placeholder(
dtype=tf.string, shape=[None], name='input_example_tensor')
receiver_tensors = {'examples': serialized_tf_example}
feature_spec = tf.feature_column.make_parse_example_spec(
[resnet50])
features = tf.io.parse_example(serialized_tf_example, feature_spec)
return tfma.export.EvalInputReceiver(
features=features,
receiver_tensors=receiver_tensors)
tfma.export.export_eval_savedmodel(
estimator=estimator,
export_dir_base=eval_model_dir,
eval_input_receiver_fn=receiver_fn)
但是,我收到以下错误:
TypeError:函数EvalInputReceiver必须使用标签来调用 指定
在我的情况下如何指定标签?