我是新手,正在学习BeautifulSoup。有人可以看看下面的代码吗?我想要网站上的剪贴数据,但没有成功。我想创建一个数据框,其中包含每年玩家到来的总数和一列玩家平均年龄。
数据帧重复代码: img dataframe error
我的代码:
import pandas as pd
import requests
from bs4 import BeautifulSoup
anos_list = list(range(2005, 2018))
anos_lista = []
valor_contratos_lista = []
idade_média_lista = []
for ano_lista in anos_list:
url = 'https://www.transfermarkt.com/flamengo-rio-de-janeiro/transfers/verein/614/saison_id/'+ str(anos_list) + ''
page = requests.get(url, headers={'User-Agent': 'Custom5'})
soup = BeautifulSoup(page.text, 'html.parser')
tag_list = soup.tfoot.find_all('td')
valor = (tag_list[0].string)
idade = (tag_list[1].string)
ano = ano_lista
valor_contratos_lista.append(valor)
idade_media_lista.append(idade)
anos_lista.append(ano)
flamengo_df = pd.DataFrame({'Ano': ano_lista,
'Despesa com contratações':valor_contratos_lista,
'Média de idade': idade_média_lista
})
flamengo_df.to_csv('flamengo.csv', encoding = 'utf-8')`
答案 0 :(得分:1)
这是我的方法:
使用Beautiful Soup + Regex:
import requests
from bs4 import BeautifulSoup
import re
import numpy as np
# Set min and max years as variables
min_year = 2005
max_year = 2019
year_range = list(range(min_year, 2019+1))
base_url = 'https://www.transfermarkt.com/flamengo-rio-de-janeiro/transfers/verein/614/saison_id/'
# Begin iterating
records = []
for year in year_range:
url = base_url+str(year)
# get the page
page = requests.get(url, headers={'User-Agent': 'Custom5'})
soup = BeautifulSoup(page.text, 'html.parser')
# I used the class of "responsive table"
tables = soup.find_all('div',{'class':'responsive-table'})
rows = tables[0].find_all('tr')
cells = [row.find_all('td', {'class':'zentriert'}) for row in rows]
# get variable names:
variables = [x.text for x in rows[0].find_all('th')]
variables_values = {x:[] for x in variables}
# get values
for row in rows:
values = [' '.join(x.text.split()) for x in row.find_all('td')]
values = [x for x in values if x!='']
if len(variables)< len(values):
values.pop(4)
values.pop(2)
for k,v in zip(variables_values.keys(), values):
variables_values[k].append(v)
num_pattern = re.compile('[0-9,]+')
to_float = lambda x: float(x) if x!='' else np.NAN
get_nums = lambda x: to_float(''.join(num_pattern.findall(x)).replace(',','.'))
# Add values to an individual record
rec = {
'Url':url,
'Year':year,
'Total Transfers':len(variables_values['Player']),
'Avg Age': np.mean([int(x) for x in variables_values['Age']]),
'Avg Cost': np.nanmean([get_nums(x) for x in variables_values['Fee'] if ('loan' not in x)]),
'Total Cost': np.nansum([get_nums(x) for x in variables_values['Fee'] if ('loan' not in x)]),
}
# Store record
records.append(rec)
此后,初始化数据框: 值得注意的是,其中一些数字代表数百万,需要对其进行调整。
import pandas as pd
# Drop the URL
df = pd.DataFrame(records, columns=['Year','Total Transfers','Avg Age','Avg Cost','Total Cost'])
Year Total Transfers Avg Age Avg Cost Total Cost
0 2005 26 22.038462 2.000000 2.00
1 2006 32 23.906250 240.660000 1203.30
2 2007 37 22.837838 462.750000 1851.00
3 2008 41 22.926829 217.750000 871.00
4 2009 31 23.419355 175.000000 350.00
5 2010 46 23.239130 225.763333 1354.58
6 2011 47 23.042553 340.600000 1703.00
7 2012 45 24.133333 345.820000 1037.46
8 2013 36 24.166667 207.166667 621.50
9 2014 37 24.189189 111.700000 335.10
10 2015 49 23.530612 413.312000 2066.56
11 2016 41 23.341463 241.500000 966.00
12 2017 31 24.000000 101.433333 304.30
13 2018 18 25.388889 123.055000 738.33
14 2019 10 25.300000 NaN 0.00