如何使用Sklearn.preprocessing对包含列表的pandas.DataFrame列进行编码

时间:2019-06-23 05:19:37

标签: python python-3.x dataframe scikit-learn sklearn-pandas

我有pandas df,有些列是其中包含数据的列表,我想对列表中的标签进行编码。

我收到此错误: CREATE TABLE `catalog`( `cat_id` int(22) NOT NULL, `cat_desc` varchar(255) NOT NULL, `datelog` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, PRIMARY KEY (cat_id) );

ValueError: Expected 2D array, got 1D array instead:

我希望获得一列包含正确编码信息的列表

from sklearn.preprocessing import OneHotEncoder
mins = pd.read_csv('recipes.csv')

enc = OneHotEncoder(handle_unknown='ignore')

X = mins['Ingredients']

'''
[[lettuce, tomatoes, ginger, vodka, tomatoes]
[lettuce, tomatoes, flour, vodka, tomatoes]
...
[flour, tomatoes, vodka, vodka, mustard]
'''

enc.fit(X)

2 个答案:

答案 0 :(得分:0)

要对DataFrame系列中的列表列表进行标签编码,我们首先使用唯一的文本标签训练编码器,然后使用applytransform将每个文本标签编码为列表中经过训练的整数标签列表。这是一个示例:

In [2]: import pandas as pd

In [3]: from sklearn import preprocessing

In [4]: df = pd.DataFrame({"Day":["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"], "Veggies&Drinks":[["lettuce"
   ...: , "tomatoes", "ginger", "vodka", "tomatoes"], ["flour", "vodka", "mustard", "lettuce", "ginger"], ["mustard", "
   ...: tomatoes", "ginger", "vodka", "tomatoes"], ["ginger", "vodka", "lettuce", "tomatoes", "flour"], ["mustard", "le
   ...: ttuce", "ginger", "flour", "tomatoes"]]})

In [5]: df
Out[5]:
         Day                                Veggies&Drinks
0     Monday  [lettuce, tomatoes, ginger, vodka, tomatoes]
1    Tuesday      [flour, vodka, mustard, lettuce, ginger]
2  Wednesday  [mustard, tomatoes, ginger, vodka, tomatoes]
3   Thursday     [ginger, vodka, lettuce, tomatoes, flour]
4     Friday   [mustard, lettuce, ginger, flour, tomatoes]

In [9]: label_encoder = preprocessing.LabelEncoder()

In [19]: list_of_veggies_drinks = ["lettuce","tomatoes","ginger","vodka","flour","mustard"]

In [20]: label_encoder.fit(list_of_veggies_drinks)
Out[20]: LabelEncoder()

In [21]: integer_encoded = df["Veggies&Drinks"].apply(lambda x:label_encoder.transform(x))

In [22]: integer_encoded
Out[22]:
0    [2, 4, 1, 5, 4]
1    [0, 5, 3, 2, 1]
2    [3, 4, 1, 5, 4]
3    [1, 5, 2, 4, 0]
4    [3, 2, 1, 0, 4]
Name: Veggies&Drinks, dtype: object

In [23]: df["Encoded"] = integer_encoded

In [24]: df
Out[24]:
         Day                                Veggies&Drinks          Encoded
0     Monday  [lettuce, tomatoes, ginger, vodka, tomatoes]  [2, 4, 1, 5, 4]
1    Tuesday      [flour, vodka, mustard, lettuce, ginger]  [0, 5, 3, 2, 1]
2  Wednesday  [mustard, tomatoes, ginger, vodka, tomatoes]  [3, 4, 1, 5, 4]
3   Thursday     [ginger, vodka, lettuce, tomatoes, flour]  [1, 5, 2, 4, 0]
4     Friday   [mustard, lettuce, ginger, flour, tomatoes]  [3, 2, 1, 0, 4]

答案 1 :(得分:0)

由于您要直接将其应用于pandas.DataFrame

from sklearn.preprocessing import LabelEncoder

# Get a flat list with all the ingredients
all_ingr = mins.Ingredients.apply(pd.Series).stack().values

enc = LabelEncoder()
enc.fit(all_ingr)

mins['Ingredients_enc'] = mins.Ingredients.apply(enc.transform)