我正在尝试编写一些代码来查看图像文件,查找相同颜色的像素组。
我这样做的方法是逐个像素地迭代图像(以带有颜色的哈希码的1d整数数组的形式),以找到我正在搜索的颜色的像素。一旦找到一个,我做一个dfs找到相同颜色的相邻像素,并将它们添加到我称为Blob的新对象。我使用布尔数组来跟踪已添加的像素,因此我不添加相同的blob。
我正在为每个Blob对象使用ArrayList来跟踪像素数。然后我使用Blob的另一个ArrayList来存储不同的组。
当我尝试在一个简单的例子上运行它时,上半部分白色和下半部分底部的图片,当我尝试使用太大的图片时,我得到了堆栈溢出错误。具体来说,当我尝试使用320x240图像执行此操作时,一旦将2752像素添加到blob中,我将获得stackoverflow。
我只是没有使用正确的数据结构来做我想做的事情?我读到ArrayLists可以在其中存储Integer.maxValue对象。
我的代码粘贴在下面。非常感谢任何帮助。
//blobfind tests code to find similar pixels of a minimum size and groups them together for analysis later
//purpose is to identify color coded objects through the webcam
//util for ArrayList
import java.util.*;
import java.awt.Color;
import java.io.*;
public class Blobfind2 {
//width and height of image in pixels
private int width;
private int height;
//hash code for the color being searched for
private int colorCode;
//minimum blob size to be added
private int minPixels;
//image in form of array of hashcodes for each pixel
private int[] img;
//keeping track of which pixels have been added to a blob
private boolean[] added;
//keeping track of which pixels have been visited when looking for a new blob
private boolean[] visited;
//debugging variable
private int count;
public Blobfind2(int inwidth, int inheight, int inCCode, int inminPixels, int[] inimage) {
width = inwidth;
height = inheight;
colorCode = inCCode;
minPixels = inminPixels;
img = inimage;
count = 0;
}
//takes hashCodeof color, minimum pixel number, and an image in the form of integer array
public ArrayList findColor() {
//makes an arraylist of "blobs"
ArrayList bloblist = new ArrayList();
//keep track of which pixels have been added to a blob
boolean[] added = new boolean[width * height];
//checks through each pixel
for (int i = 0; i < img.length; i++) {
//if it matches and is not part of a blob, we run dfs to collect all the pixels in that blob
if ((img[i] == colorCode) && (added[i] == false)) {
//visited keeps track of which pixels in the blob have been visited
//refreshed each time a new blob is made
boolean[] visited = new boolean[width*height];
Blob currBlob = new Blob();
dfs(img, currBlob, i, Color.white.hashCode(), added, visited);
//adds the blob to the bloblist if it is of a certain size
if (currBlob.mass() >= minPixels) {
bloblist.add(currBlob);
}
}
}
return bloblist;
}
//recursive algorithm to find other members of a blob
public void dfs (int[] img, Blob blob, int currPixel, int colorCode, boolean[] added, boolean[] visited) {
//System.out.print(currPixel + " - " + count + " ");
count++;
//check current pixel, this only happens on the first pixel
if (visited[currPixel] == false) {
blob.add(img[currPixel]);
added[currPixel] = true;
visited[currPixel] = true;
}
//checks down pixel
if ((currPixel + width < height*width) && (visited[currPixel + width] == false)) {
if (img[currPixel + width] == colorCode) {
blob.add(img[currPixel + width]);
currPixel = currPixel + width;
added[currPixel] = true;
visited[currPixel] = true;
dfs(img, blob, currPixel, colorCode, added, visited);
}
}
//checks up pixel
if ((currPixel - width > 0) && (visited[currPixel - width] == false)) {
if (img[currPixel - width] == colorCode) {
blob.add(img[currPixel - width]);
currPixel = currPixel - width;
added[currPixel] = true;
visited[currPixel] = true;
dfs (img, blob, currPixel, colorCode, added, visited);
}
}
//checks right pixel
if ((currPixel + 1 < width * height) && (visited[currPixel + 1] == false) && (((currPixel + 1) % width) != 0)) {
if (img[currPixel + 1] == colorCode) {
blob.add(img[currPixel + 1]);
currPixel = currPixel + 1;
added[currPixel] = true;
visited[currPixel] = true;
dfs(img, blob, currPixel, colorCode, added, visited);
}
}
//checks left pixel
if ((currPixel - 1 > 0) && (visited[currPixel - 1] == false) && (((currPixel - 1) % width) != width - 1)) {
if (img[currPixel - 1] == colorCode) {
blob.add(img[currPixel - 1]);
currPixel = currPixel - 1;
added[currPixel] = true;
visited[currPixel] = true;
dfs(img, blob, currPixel, colorCode, added, visited);
}
}
return;
}
//test case, makes a new image thats half black and half white
//should only return one blob of size width*height/2
public static void main(String[] args) {
int width = 320;
int height = 240;
//builds the image
int[] img = new int[width * height];
for (int i = 0; i < img.length; i++) {
if (i < img.length/4) {
img[i] = Color.white.hashCode();
} else {
img[i] = Color.black.hashCode();
}
}
//runs blobfind
Blobfind2 bf = new Blobfind2(width, height, Color.white.hashCode(), 1, img);
ArrayList bloblist = bf.findColor();
System.out.println(bloblist.size());
//need to typecast things coming out of arraylists
Blob firstblob = (Blob)bloblist.get(0);
System.out.println(firstblob.mass());
}
private class Blob {
private ArrayList pixels = new ArrayList();
private Blob() {
}
private int mass() {
return pixels.size();
}
private void add(int i) {
pixels.add(i);
}
private ArrayList getBlob() {
return pixels;
}
}
}
答案 0 :(得分:4)
堆栈溢出错误与您使用List
,Map
或任何其他特定数据结构无关。这些构造在堆上分配。您看到堆栈溢出错误,因为您进行了递归函数调用。每个递归函数调用都在堆栈上分配内存。您可以增加-Xss值(e.g java -Xss8m HelloWorld)
,也可以将算法重写为非递归(假设算法正确)。
答案 1 :(得分:1)
这与flood-fill算法非常相似。递归实现可能会破坏大型blob的堆栈(例如,进行过多的递归调用),因为您必须为每个像素探索4个邻居。最坏的情况是同一个blob中的图像!
我会尝试使堆栈显式化。您希望避免递归并使用简单的基于循环的方法。
public void dfs () {
Stack<Pixel> pixels = new Stack<Pixel>();
pixels.push(currentPixel);
while (!pixels.isEmpty()) {
Pixel x = pixels.pop();
// Do whatever processing on this pixel
Pixel upPixel = getUpPixel();
if (upPixel == colorCode) {
pixels.push(upPixel);
}
// And so on
}
}