LightGBM超参数调整RandomimzedSearchCV

时间:2019-06-20 11:50:15

标签: hyperparameters lightgbm

我有一个具有以下维度的数据集,用于训练和测试集-

X_train =(58149,9),y_train =(58149,),X_test =(24921,9)和y_test =(24921,)

我使用LightGBM分类器为RandomizedSearchCV提供的代码如下-

# Parameters to be used for RandomizedSearchCV-
rs_params = {
        # 'bagging_fraction': [0.6, 0.66, 0.7],
        'bagging_fraction': sp_uniform(0.5, 0.8),
        'bagging_frequency': sp_randint(5, 8),
        # 'feature_fraction': [0.6, 0.66, 0.7],
        'feature_fraction': sp_uniform(0.5, 0.8),
        'max_depth': sp_randint(10, 13),
        'min_data_in_leaf': sp_randint(90, 120),
        'num_leaves': sp_randint(1200, 1550)

}

# Initialize a RandomizedSearchCV object using 5-fold CV-
rs_cv = RandomizedSearchCV(estimator=lgb.LGBMClassifier(), param_distributions=rs_params, cv = 5, n_iter=100)

# Train on training data-
rs_cv.fit(X_train, y_train)

当我执行此代码时,它给我以下错误-

LightGBMError:检查失败:bagging_fraction <= 1.0,位于/__w/1/s/python-package/compile/src/io/config_auto.cpp,第295行。

关于出什么问题了吗?

谢谢!

1 个答案:

答案 0 :(得分:0)

我已从您的代码中删除了sp_uniform和sp _ randint,并且运行良好

from sklearn.model_selection import RandomizedSearchCV
import lightgbm as lgb


np.random.seed(0)


d1 = np.random.randint(2, size=(100, 9))
d2 = np.random.randint(3, size=(100, 9))
d3 = np.random.randint(4, size=(100, 9))
Y = np.random.randint(7, size=(100,))


X = np.column_stack([d1, d2, d3])

rs_params = {

        'bagging_fraction': (0.5, 0.8),
        'bagging_frequency': (5, 8),

        'feature_fraction': (0.5, 0.8),
        'max_depth': (10, 13),
        'min_data_in_leaf': (90, 120),
        'num_leaves': (1200, 1550)

}

# Initialize a RandomizedSearchCV object using 5-fold CV-
rs_cv = RandomizedSearchCV(estimator=lgb.LGBMClassifier(), param_distributions=rs_params, cv = 5, n_iter=100,verbose=1)

# Train on training data-
rs_cv.fit(X, Y,verbose=1)

并且根据文档 bagging_fraction将为<= 0 || > = 1

添加冗长= 1,以便您可以查看模型的拟合 详细信息会向我们提供您的模型信息。