下表显示了设备每小时的能耗:
+--------------+-----------+-----------------------+
| energy_usage | device_id | timestamp |
+--------------+-----------+-----------------------+
| 10 | 1 | 2019-02-12T01:00:00 |
| 16 | 2 | 2019-02-12T01:00:00 |
| 26 | 1 | 2019-03-12T02:00:00 |
| 24 | 2 | 2019-03-12T02:00:00 |
+--------------+-----------+-----------------------+
我汇总这些数据,以便按白天和设备获取白天和晚上的能耗:
+--------------+------------------+--------------------+-----------+------------+
| energy_usage | energy_usage_day | energy_usage_night | device_id | date |
+--------------+------------------+--------------------+-----------+------------+
| 80 | 30 | 50 | 1 | 2019-06-02 |
| 130 | 60 | 70 | 2 | 2019-06-03 |
+--------------+------------------+--------------------+-----------+------------+
我只对超过特定阈值的能源使用感兴趣。以下查询对我有用:
WITH temp AS (
SELECT *, SUM(usage) OVER(win) > 50 qualified,
SUM(usage) OVER(win) - 50 rolling_sum,
EXTRACT(HOUR FROM timestamp) BETWEEN 8 AND 19 day_hour,
EXTRACT(MONTH FROM timestamp) month,
FORMAT_TIMESTAMP("%Y-%m-%d", timestamp) date
FROM `project.dataset.table`
WINDOW win AS (PARTITION BY device_id, TIMESTAMP_TRUNC(timestamp, MONTH) ORDER BY timestamp)
), temp_with_adjustments AS (
SELECT *,
IF(
ROW_NUMBER() OVER(PARTITION BY device_id, MONTH ORDER BY timestamp) = 1,
rolling_sum,
usage
) AS adjusted_energy_usage
FROM temp
WHERE qualified
)
SELECT ROUND(SUM(adjusted_energy_usage), 4) energy_usage,
ROUND(SUM(IF(day_hour, adjusted_energy_usage, 0)), 4) energy_usage_day,
ROUND(SUM(IF(NOT day_hour, adjusted_energy_usage, 0)), 4) energy_usage_night,
device_id,
date
FROM temp_with_adjustments
GROUP BY device_id, date
虽然第一个表格显示了能源使用量,但我还有另一个表格显示了相应的能源使用费用:
+--------------+-----------+-----------------------+
| usage_charge | device_id | timestamp |
+--------------+-----------+-----------------------+
| 0.2 | 1 | 2019-02-12T01:00:00 |
| 0.6 | 2 | 2019-02-12T01:00:00 |
| 0.1 | 1 | 2019-03-12T02:00:00 |
| 1.2 | 2 | 2019-03-12T02:00:00 |
+--------------+-----------+-----------------------+
对于能源消耗大于50的设备,我想按设备和日期深入了解白天和晚上的使用费用。结果可能如下:
+--------------+------------------+--------------------+--------------+------------------+--------------------+-----------+------------+
| energy_usage | energy_usage_day | energy_usage_night | usage_charge | usage_charge_day | usage_charge_night | device_id | date |
+--------------+------------------+--------------------+--------------+------------------+--------------------+-----------+------------+
| 80 | 30 | 50 | 1.2 | 0.4 | 0.8 | 1 | 2019-06-02 |
| 130 | 60 | 70 | 2.5 | 1 | 1.5 | 2 | 2019-06-03 |
+--------------+------------------+--------------------+--------------+------------------+--------------------+-----------+------------+
所以我的第一个想法是对使用费使用与对能源使用完全相同的查询。但是,虽然可以为能源使用设定50的阈值,但是我无法为使用费用命名一个固定的阈值,因为费用计算因设备而异。因此,我必须先使能源使用量> 50,然后使用时间戳来汇总使用费。有什么想法可以在bigquery中完成吗?甚至有可能吗?
答案 0 :(得分:1)
以下内容适用于BigQuery Standard SQL,并且仅基于我在初始查询中看到的应用模式-因此,要我100%确保它正是您所需要的是非常困难的。但是无论如何,从这里开始肯定是个好开始
#standardSQL
WITH temp AS (
SELECT *, SUM(IF(qualified, usage_charge, 0)) OVER(win) rolling_charge
FROM (
SELECT *, SUM(usage) OVER(win) > 50 qualified,
SUM(usage) OVER(win) - 50 rolling_sum,
EXTRACT(HOUR FROM timestamp) BETWEEN 8 AND 19 day_hour,
EXTRACT(MONTH FROM timestamp) month,
FORMAT_TIMESTAMP("%Y-%m-%d", timestamp) date
FROM `project.dataset.usage`
JOIN `project.dataset.charges` USING(device_id, timestamp)
WINDOW win AS (PARTITION BY device_id, TIMESTAMP_TRUNC(timestamp, MONTH) ORDER BY timestamp)
)
WINDOW win AS (PARTITION BY device_id, TIMESTAMP_TRUNC(timestamp, MONTH) ORDER BY timestamp)
), temp_with_adjustments AS (
SELECT *,
IF(
ROW_NUMBER() OVER(PARTITION BY device_id, MONTH ORDER BY timestamp) = 1,
rolling_sum,
usage
) AS adjusted_energy_usage
FROM temp
WHERE qualified
)
SELECT ROUND(SUM(adjusted_energy_usage), 4) energy_usage,
ROUND(SUM(IF(day_hour, adjusted_energy_usage, 0)), 4) energy_usage_day,
ROUND(SUM(IF(NOT day_hour, adjusted_energy_usage, 0)), 4) energy_usage_night,
ROUND(SUM(rolling_charge), 4) usage_charge,
ROUND(SUM(IF(day_hour, rolling_charge, 0)), 4) usage_charge_day,
ROUND(SUM(IF(NOT day_hour, rolling_charge, 0)), 4) usage_charge_night,
device_id,
date
FROM temp_with_adjustments
GROUP BY device_id, date