加载模型后,我无法访问图层。
我按如下方式创建了模型:
.gradle
然后我加载模型:
def create_model(vocab_dim, hidden_dim):
input_seq_axis1 = Axis('inputAxis1')
input_sequence_before = sequence.input_variable(shape=vocab_dim, sequence_axis=input_seq_axis1, is_sparse = use_sparse)
input_sequence_after = sequence.input_variable(shape=vocab_dim, sequence_axis=input_seq_axis1, is_sparse = use_sparse)
e=Sequential([
C.layers.Embedding(hidden_dim),
Stabilizer()
],name='Embedding')
a = Sequential([
e,
C.layers.Recurrence(C.layers.LSTM(hidden_dim//2),name='ForwardRecurrence'),
],name='ForwardLayer')
b = Sequential([
e,
C.layers.Recurrence(C.layers.LSTM(hidden_dim//2),go_backwards=True),
],name='BackwardLayer')
latent_vector = C.splice(a(input_sequence_before), b(input_sequence_after))
bias = C.layers.Parameter(shape = (vocab_dim, 1), init = 0, name='Bias')
weights = C.layers.Parameter(shape = (vocab_dim, hidden_dim), init = C.initializer.glorot_uniform(), name='Weights')
z = C.times_transpose(weights, latent_vector,name='Transpose') + bias
z = C.reshape(z, shape = (vocab_dim))
return z
我得到一个错误:TypeError(“参数ForwardRecurrence的类型SequenceOver [inputAxis1] [Tensor [100]]与传递的变量的类型SequenceOver [inputAxis1] [SparseTensor [50000]]不兼容”,)
看起来名称(z.ForwardLayer)所引用的图层代表了来自图层立即输入的函数。如何计算“ latent_vector”(我需要此变量来创建交叉熵和损失函数以继续训练)?
答案 0 :(得分:1)
基于该错误,与您的ForwardLayer(100)相比,输入序列的尺寸太大(5000)。
通过z.ForwardLayer
选择节点ForwardLayer时,仅选择非常特定的节点/层,而不选择与其连接的计算图的层/节点/其余部分。
您应该执行a = C.combine([z.ForwardLayer.owner])
并且应该没事。