熊猫在df2.columns上合并时给出KeyError

时间:2019-06-17 07:54:21

标签: python python-3.x pandas dataframe merge

我有两个数据框。第一个为空,但已定义列:

Empty DataFrame
Columns: [ID, 3120, 3121, 3122, 3123, 3124, 3125, 3126, 3127, 3128, 3129, 3130, 3131, 3146, 3147, 3148, 3149, 3150, 3151, 3152, 3153, 3154, 3155, 3156, 3157]
Index: []

第二个数据帧是:

    3123    3124    3125    3126    3127
0   A       B       C       D       

稍后,我将有另一个数据框:

    3146    3147    3148    3149    3150
0   X       Y       Z           

以此类推。我想要的是将所有这些小数据帧放入第一个数据帧中,以获得类似的内容:

ID  3120    3121    3122    3123    3124    3125    3126    3127    3128    3129    3130    3131    3146    3147    3148    3149    3150    3151    3152    3153    3154    3155    3156    3157
1                           A       B       C       D                                               X       Y       Z

所以我在循环中正在做的是:

df_main.merge(df_i, how='inner', on=df_i.columns)

在哪里,当i = 1时:

df_main.columns:

Index(['ID', '3120', '3121', '3122', '3123', '3124', '3125', '3126',
       '3127', '3128', '3129', '3130', '3131', '3146', '3147', '3148', '3149',
       '3150', '3151', '3152', '3153', '3154', '3155', '3156', '3157'],
      dtype='object')


df_i.columns:

Index(['3123', '3124', '3125', '3126', '3127'], dtype='object')

代码正在引发此KeyError:

    raise KeyError(key)
KeyError: Index(['3123', '3124', '3125', '3126', '3127'], dtype='object')

这怎么可能? df_i.columns被包含并存在于df_main.columns

提前谢谢!

1 个答案:

答案 0 :(得分:1)

好的一种方法

df1

  3123 3124 3125 3126  3127
0    A    B    C    D   NaN

df2

  3146 3147 3148  3149  3150
0    X    Y    Z   NaN   NaN

使用pd.concat

df = pd.concat([df.drop(df1.columns.append(df2.columns),axis=1),df2,df3], sort=True, axis=1)
df = df[['ID', 3120, 3121, 3122, 3123, 3124, 3125, 3126, 3127, 3128, 3129, 3130, 3131, 3146, 3147, 3148, 3149, 3150, 3151, 3152, 3153, 3154, 3155, 3156, 3157]] # for reordering
df.fillna('', inplace=True)

输出

    ID 3120 3121 3122 3123 3124 3125 3126 3127 3128 ...  3148 3149 3150 3151  \
0                      A    B    C    D           ...     Z                  

  3152 3153 3154 3155 3156 3157  
0                                

[1 rows x 25 columns]