我想通过调用适当的函数动态创建诸如权重和偏差之类的变量,为每个函数获取tf.summary,然后将它们合并 同时使用两个FileWriter,一个用于训练集,另一个用于验证
我在模型定义后尝试了tf.summary.merge_all(),但它不起作用
例如:
def weight_dict(shape,name):
init = tf.truncated_normal(shape, stddev=0.1)
return(tf.Variable(init,name=name))
def bias_dict(shape,name):
init = tf.constant(0.1, shape=shape)
return(tf.Variable(init,name=name))
def conv_layer(inp, shape,name):
W = weight_dict(shape,(name+'_w'))
b = bias_dict([shape[3]],(name+'_b'))
weigth_summ = tf.summary.histogram('weigths',W,collections=['weigths'])
bias_summ = tf.summary.histogram('biases',b,collections=['biases'])
return (conv2d(inp,W,b,name))
class CNN():
def model():
conv_layer_1 = conv_layer()
#..............
conv_layer_n = conv_layer()
network = model()
init = tf.global_variable_initializer()
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
# .......