我正在尝试编写可生成随机数据并计算拟合优度的代码,但我不明白为什么卡方检验始终为零,我是否可以解决这个问题?为了尝试修复,我尝试使用不同的类型,以查看是否在初始输出中得到任何结果更改,还尝试将参数更改为所讨论的循环。
from scipy import stats
import math
import random
import numpy
import scipy
import numpy as np
def Linear_Chi2_Generate(observed_values = [], expected_values = []):
#===============================================================#
# !!!!!!! Generation of Data !!!!!!!!!! #
#===============================================================#
for i in range(0,12):
a = random.randint(-10,10)
b = random.randint(-10,10)
y = a * (b + i)
observed_values.append(y)
#######################################################################################
# !!! Array Setup !!!! #
# ***Had the Array types converted to floats before computing Chi2*** #
# #
#######################################################################################
t_s = 0
o_v = np.array(observed_values)
e_v = np.array(expected_values)
o_v_f = o_v.astype(float)
e_v_f = o_v.astype(float)
z_o_e_v_f = zip(o_v.astype(float), e_v.astype(float))
######################################################################################
for i in z_o_e_v_f:
t_s += [((o_v_f)-(e_v_f))]**2/(e_v_f) # Computs the Chi2 Stat !
######################################################################################
print("Observed Values ", o_v_f)
print("Expected Values" , e_v_f)
df=len(o_v_f)-1
print("Our goodness of fit for our linear function", stats.chi2.cdf(t_s,df))
return t_s
Linear_Chi2_Generate()
答案 0 :(得分:1)
在您的原始代码中,e_v_f = o_v.astype(float)
使得o_v_f
和e_v_f
都一样。 for
循环中也存在一些问题。我已经编辑了一些代码。查看您要查找的内容:
from scipy import stats
import math
import random
import numpy
import scipy
import numpy as np
def Linear_Chi2_Generate(observed_values = [], expected_values = []):
#===============================================================#
# !!!!!!! Generation of Data !!!!!!!!!! #
#===============================================================#
for i in range(0,12):
a_o = random.randint(-10,10)
b_o = random.randint(-10,10)
y_o = a_o * (b_o + i)
observed_values.append(y_o)
# a_e = random.randint(-10,10)
# b_e = random.randint(-10,10)
# y_e = a_e * (b_e + i)
expected_values.append(y_o + 5)
#######################################################################################
# !!! Array Setup !!!! #
# ***Had the Array types converted to floats before computing Chi2*** #
# #
#######################################################################################
t_s = 0
o_v = np.array(observed_values)
e_v = np.array(expected_values)
o_v_f = o_v.astype(float)
e_v_f = e_v.astype(float)
z_o_e_v_f = zip(o_v.astype(float), e_v.astype(float))
######################################################################################
for o, e in z_o_e_v_f:
t_s += (o - e) **2 / e # Computs the Chi2 Stat !
######################################################################################
print("Observed Values ", o_v_f)
print("Expected Values" , e_v_f)
df=len(o_v_f)-1
print("Our goodness of fit for our linear function", stats.chi2.cdf(t_s,df))
return t_s
Linear_Chi2_Generate()