from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(mushroom_x, mushroom_y)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-106-ec260714820e> in <module>
----> 1 lr.fit(mushroom_x, mushroom_y)
~/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py in fit(self, X, y, sample_weight)
1286
1287 X, y = check_X_y(X, y, accept_sparse='csr', dtype=_dtype, order="C",
-> 1288 accept_large_sparse=solver != 'liblinear')
1289 check_classification_targets(y)
1290 self.classes_ = np.unique(y)
~/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
759 dtype=None)
760 else:
--> 761 y = column_or_1d(y, warn=True)
762 _assert_all_finite(y)
763 if y_numeric and y.dtype.kind == 'O':
~/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in column_or_1d(y, warn)
795 return np.ravel(y)
796
--> 797 raise ValueError("bad input shape {0}".format(shape))
798
799
ValueError: bad input shape (8124, 2)
我是这里机器学习的新手,我正试图找出一个.csv文件。
我仔细检查了有关输入错误的值错误的其他问题,但仍与此处的解决方案混淆。
答案 0 :(得分:0)
Here是sklearn.linear_model.LogisticRegression.fit
的文档。您的标签y
需要一个一维数组,其中元素数等于x
中的样本数。就您而言,y
是2D数组。不确定,但从外观上看,您可能已经交换了x
和y
。