我正在尝试使用GSL解决Cauchy问题。我有一个参数的原始函数。我认为问题可能出在我的参数中,但是有错误
gsl: driver.c:356: ERROR: integration limits and/or step direction not consistent
Default GSL error handler invoked.
随时抛出。
这是代码。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
// GSL lib includes
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
struct Dots {
double par;
double x;
double y;
};
int ode_func (double x, const double y[], double f[], void *params)
{
double mu = *(int *)params;
f[0] = (x + 2 * y[0]) / (1 + mu * mu);
return GSL_SUCCESS;
}
void calc_cauchy_problem(double x_start, double x_end, double y_start,
int count, int param1, int param2) {
int dim = 1;
double x = x_start;
double y[1] = {y_start};
int param = param1;
int status = 0;
for (param = param1; param <= param2; param++) {
gsl_odeiv2_system sys = {ode_func, NULL, dim, ¶m};
gsl_odeiv2_driver * d =
gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rkf45, 1e-6, 1e-6, 0.0);
for (int i = 1; i <= count; i++) {
double xi = x_start + i * (x_end - x_start) / count;
int status = gsl_odeiv2_driver_apply(d, &x, xi, y);
if (status != GSL_SUCCESS)
{
printf ("error, return value=%d\n", status);
break;
}
}
gsl_odeiv2_driver_free (d);
}
}
int main() {
double start_time = omp_get_wtime();
double x_start = 0;
double x_end = 2;
double y_start = 0;
const int count = 50;
int param1 = 0;
int param2 = 10;
calc_cauchy_problem(x_start, x_end, y_start, count, param1, param2);
printf("Elapsed time = %f\n", omp_get_wtime() - start_time);
return 0;
}
当前没有对该数据的处理。
我发现如果我只有一个循环循环for (param = param1; param <= param2; param++) {
,则可以正常工作。
问题出现在第二个循环循环的int status = gsl_odeiv2_driver_apply(d, &x, xi, y);
答案 0 :(得分:2)
问题已解决,我认为这与struct Dots ArrayOfDots[count];
有关
我正在循环中使用。这是没有问题的代码。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
// GSL lib includes
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
int ode_func (double x, const double y[], double f[], void *params)
{
double mu = *(int *)params;
f[0] = (x + 2 * y[0]) / (1 + mu * mu);
return GSL_SUCCESS;
}
void calc_cauchy_problem(double x_start, double x_end, double y_start,
int count, int param1, int param2) {
#pragma omp parallel for
for(int param = param1; param < param2; param++) {
gsl_odeiv2_system sys = {ode_func, NULL, 1, ¶m};
gsl_odeiv2_driver * d =
gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk8pd,
1e-6, 1e-6, 0.0);
int i;
double x = x_start, x1 = x_end;
double y[1] = { y_start };
for (i = 1; i <= count; i++)
{
double xi = i * x1 / count;
int status = gsl_odeiv2_driver_apply (d, &x, xi, y);
if (status != GSL_SUCCESS)
{
printf ("error, return value=%d\n", status);
break;
}
// printf ("%d %d %.5e %.5e\n", omp_get_thread_num(), param, x, y[0]);
}
gsl_odeiv2_driver_free (d);
}
}
int main() {
double start_time = omp_get_wtime();
double x_start = 0;
double x_end = 10;
double y_start = 0;
const int count = 100000;
int param1 = 1;
int param2 = 20;
calc_cauchy_problem(x_start, x_end, y_start, count, param1, param2);
printf("Elapsed time = %f\n", omp_get_wtime() - start_time);
return 0;
}