我正在遵循此article,并使用我自己的数据尝试在出现此错误时根据客户的生命周期支出来绘制客户的订单数量:
我尝试从数据框中删除true / false值并更新相关包
TypeError Traceback (most recent call last)
<ipython-input-74-221045cec1a1> in <module>
3 y_means = km4.fit_predict(X)
4 #Visualizing the clusters for k=4
----> 5 plt.scatter(X[y_means==0,0],X[y_means==0,1],s=50, c='purple',label='Cluster1')
6 plt.scatter(X[y_means==1,0],X[y_means==1,1],s=50, c='blue',label='Cluster2')
7 plt.scatter(X[y_means==2,0],X[y_means==2,1],s=50, c='green',label='Cluster3')
/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key)
2925 if self.columns.nlevels > 1:
2926 return self._getitem_multilevel(key)
-> 2927 indexer = self.columns.get_loc(key)
2928 if is_integer(indexer):
2929 indexer = [indexer]
/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
2655 'backfill or nearest lookups')
2656 try:
-> 2657 return self._engine.get_loc(key)
2658 except KeyError:
2659 return self._engine.get_loc(self._maybe_cast_indexer(key))
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
TypeError: '(array([ True, True, True, ..., True, True, True]), 0)' is an invalid key```
Update: After following the advice in the comments and changing my plt.scatter to `plt.scatter(X[y_means==0][:,0],X[y_means==0][:,1],`
I receive the error `TypeError: '(slice(None, None, None), 0)' is an invalid key`
答案 0 :(得分:0)
尝试在pandas.dataframe上使用numpy技术是一个问题
我使用X=X.value
进行了转换,并且有效
答案 1 :(得分:0)
using Your error code here
y_means = km4.fit_predict(X)
# solution, convert the dataframe to a np.array
#Visualizing the clusters for k=4
X = np.array(X) #that all
plt.scatter(X[y_means==0,0],X[y_means==0,1],s=50, c='purple',label='Cluster1')
plt.scatter(X[y_means==1,0],X[y_means==1,1],s=50, c='blue',label='Cluster2')
plt.scatter(X[y_means==2,0],X[y_means==2,1],s=50, c='green',label='Cluster3')
答案 2 :(得分:0)
导入数据集后使用X = X.values