尝试从语法上解决这个问题……似乎是一个难题……基本上,如果未在时间序列时间戳记间隔源数据中捕获传感器项,则想为每个缺少的传感器项添加一行每个时间戳窗口为NULL值
# list of sensor items [have 300 plus; only showing 4 as example]
list = ["temp", "pressure", "vacuum", "burner"]
# sample data
df = spark.createDataFrame([('2019-05-10 7:30:05', 'temp', '99'),\
('2019-05-10 7:30:05', 'burner', 'TRUE'),\
('2019-05-10 7:30:10', 'vacuum', '.15'),\
('2019-05-10 7:30:10', 'burner', 'FALSE'),\
('2019-05-10 7:30:10', 'temp', '75'),\
('2019-05-10 7:30:15', 'temp', '77'),\
('2019-05-10 7:30:20', 'pressure', '.22'),\
('2019-05-10 7:30:20', 'temp', '101'),], ["date", "item", "value"])
# current dilemma => all sensor items are not being captured / only updates to sensors are being captured in current back-end design streaming devices
+------------------+--------+-----+
| date| item|value|
+------------------+--------+-----+
|2019-05-10 7:30:05| temp| 99|
|2019-05-10 7:30:05| burner| TRUE|
|2019-05-10 7:30:10| vacuum| .15|
|2019-05-10 7:30:10| burner|FALSE|
|2019-05-10 7:30:10| temp| 75|
|2019-05-10 7:30:15| temp| 77|
|2019-05-10 7:30:20|pressure| .22|
|2019-05-10 7:30:20| temp| 101|
+------------------+--------+-----+
想要捕获每个时间戳的每个传感器项,因此可以在旋转数据帧之前执行正向填充估算[正向填充300 plus cols会导致scala错误=>
Spark Caused by: java.lang.StackOverflowError Window Function?
# desired output
+------------------+--------+-----+
| date| item|value|
+------------------+--------+-----+
|2019-05-10 7:30:05| temp| 99|
|2019-05-10 7:30:05| burner| TRUE|
|2019-05-10 7:30:05| vacuum| NULL|
|2019-05-10 7:30:05|pressure| NULL|
|2019-05-10 7:30:10| vacuum| .15|
|2019-05-10 7:30:10| burner|FALSE|
|2019-05-10 7:30:10| temp| 75|
|2019-05-10 7:30:10|pressure| NULL|
|2019-05-10 7:30:15| temp| 77|
|2019-05-10 7:30:15|pressure| NULL|
|2019-05-10 7:30:15| burner| NULL|
|2019-05-10 7:30:15| vacuum| NULL|
|2019-05-10 7:30:20|pressure| .22|
|2019-05-10 7:30:20| temp| 101|
|2019-05-10 7:30:20| vacuum| NULL|
|2019-05-10 7:30:20| burner| NULL|
+------------------+--------+-----+
答案 0 :(得分:2)
展开my comment:
您可以将数据框与不同日期和sensor_list
的笛卡尔乘积一起正确连接。由于sensor_list
很小,因此可以broadcast
。
from pyspark.sql.functions import broadcast
sensor_list = ["temp", "pressure", "vacuum", "burner"]
df.join(
df.select('date')\
.distinct()\
.crossJoin(broadcast(spark.createDataFrame([(x,) for x in sensor_list], ["item"]))),
on=["date", "item"],
how="right"
).sort("date", "item").show()
#+------------------+--------+-----+
#| date| item|value|
#+------------------+--------+-----+
#|2019-05-10 7:30:05| burner| TRUE|
#|2019-05-10 7:30:05|pressure| null|
#|2019-05-10 7:30:05| temp| 99|
#|2019-05-10 7:30:05| vacuum| null|
#|2019-05-10 7:30:10| burner|FALSE|
#|2019-05-10 7:30:10|pressure| null|
#|2019-05-10 7:30:10| temp| 75|
#|2019-05-10 7:30:10| vacuum| .15|
#|2019-05-10 7:30:15| burner| null|
#|2019-05-10 7:30:15|pressure| null|
#|2019-05-10 7:30:15| temp| 77|
#|2019-05-10 7:30:15| vacuum| null|
#|2019-05-10 7:30:20| burner| null|
#|2019-05-10 7:30:20|pressure| .22|
#|2019-05-10 7:30:20| temp| 101|
#|2019-05-10 7:30:20| vacuum| null|
#+------------------+--------+-----+