数据如下:
quarter name week value
17Q3 abc 1 0.7
17Q3 abc 3 0.65
17Q3 def 1 0.13
17Q3 def 2 0.04
我可以插入值= 0的行,其中缺少一周的值,即输出应该是:
quarter name week value
17Q3 abc 1 0.7
17Q3 abc 3 0.65
17Q3 abc 2 0.0
17Q3 def 1 0.13
17Q3 def 2 0.04
17Q3 def 3 0.0
需要填写到第13周。(即检查到13)
答案 0 :(得分:1)
在Dim src, dst as Workbook
dst= ThisWorkbook 'Destination is your current workbook
'Define the src inside your IF-ELSE tree based on 'B7' cell value
'Use the statement below for each cell value with address in the 'Range' quotes
dst.Range("").Value= src.Range("").Value
中使用expand
怎么样。
complete
或者,也许更容易理解:
library(tidyverse)
complete(df, expand(df, quarter, name, week), fill = list(value=0))
# quarter name week value
# <fct> <fct> <int> <dbl>
# 1 17Q3 abc 1 0.700
# 2 17Q3 abc 2 0
# 3 17Q3 abc 3 0.650
# 4 17Q3 def 1 0.130
# 5 17Q3 def 2 0.0400
# 6 17Q3 def 3 0
答案 1 :(得分:0)
以下是tidyverse
的一个选项。我们根据“季度”,“名称”和“ID”获取了complete
,arrange
行的缺失组合,然后将mutate
'id'添加到'row_number( ))and
选择列,使其具有与原始数据集中相同的顺序
library(tidyverse)
df1 %>%
complete(quarter, name, week = full_seq(week, 1), fill = list(value = 0)) %>%
arrange(quarter, name, id) %>%
mutate(id = row_number()) %>%
select(names(df1))
# A tibble: 6 x 5
# id quarter name week value
# <int> <chr> <chr> <dbl> <dbl>
#1 1 17Q3 abc 1.00 0.700
#2 2 17Q3 abc 3.00 0.650
#3 3 17Q3 abc 2.00 0
#4 4 17Q3 def 1.00 0.130
#5 5 17Q3 def 2.00 0.0400
#6 6 17Q3 def 3.00 0