我正在编写一个程序,该程序将为较弱的RSA公钥计算私钥。我想知道如何从值p
确定q
和n
的值。到目前为止,这是Python代码:
from Crypto.PublicKey import RSA #PyCryptoDome
import .math as cm # My own module
with open(public_keyfile, 'rb') as key: # Public Keyfile Is in PEM format
public_key = RSA.import_key(key)
n = public_key.n # N value of the public_key
e = public_key.e # E value of the public_key
p, q = get_factors_of(n) # This I don't know how to do, though there is a question that might help [see bottom]
t = cm.lcm(p-1, q-1) # Get the lowest common multiple of q and q
d = cm.mod_inverse(e, t) # Get d, the modular inverse of e % t
private_key = RSA.construct((n, e, d, p, q) # Construct the RSA private_key
上面引用的.math
模块:
from math import gcd
def mod_inverse(a, b):
a = a % b
for x in range(1, b):
if (a * x) % b == 1:
return x
return 1
def lcm(x, y):
return x * y // gcd(x, y)
我需要做的事情似乎已被引用 here,但此代码是Java语言。
如果有人知道如何使用python从p
获取q
和n
,将不胜感激。
非常感谢,Legolooj。
答案 0 :(得分:2)
强制性警告:如果您追求性能,则需要亲自调查算法的详细信息。即便是“弱”的公钥,也将通过简单的算法(例如Erathostene的筛子)永久破解。
话虽这么说,sympy.ntheory.factorint()
可能是您所需要的:
from sympy.ntheory import factorint
print(factorint(54)) # {2: 1, 3: 3} i.e. 54 == 2**1 * 3**3
答案 1 :(得分:0)
经过大量的Google搜索和pdf阅读后,我发现了一种有效的算法。这是一个python实现:
import math
def get_factors_of(num):
poss_p = math.floor(math.sqrt(num))
if poss_p % 2 == 0: # Only checks odd numbers, it reduces time by orders of magnitude
poss_p += 1
while poss_p < num:
if num % poss_p == 0:
return poss_p
poss_p += 2
此算法有效地找到了一个小的RSA密钥的P / Q因子。 (我已经针对64位PEM公钥对其进行了测试)