我有一系列地点事故的清单,想看看离这些事故最近的警察局。目前,事故的latlongs列表使用熊猫分别放在两列中(很抱歉,我对python还是很陌生,所以我可能使用了错误的单词)。警察局的latlongs当前位于单独的json文件中。我当前的目标是创建一个新的列(或文件),其中最近的派出所的拉特朗斯出现。理想情况下,它应该是对应的名称,但这是我遇到的桥梁。
我研究了其他人是如何做到的,但是除了询问该地点只一对拉特朗斯,而且并非同时询问所有拉特朗斯之外,别无他法。
from math import cos, asin, sqrt
def distance (lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p)*cos(lat2*p) * (1-cos((lon2-lon1)*p)) / 2
return 12742 * asin(sqrt(a))
def closest(data, v):
return min(data, key=lambda p: distance(v['lat'],v['lon'],p['lat'],p['lon']))
#these are the latlons of the police stations
tempDataList = [{"lat": 52.003181, "lon": 4.353068},
{"lat": 52.089416, "lon": 4.377340},
{"lat": 52.019911, "lon": 4.426602},
{"lat": 52.054457, "lon": 4.388764},
{"lat": 52.044536, "lon": 4.332631},
{"lat": 52.072910, "lon": 4.274784},
{"lat": 52.066099, "lon": 4.298664},
{"lat": 52.070030, "lon": 4.317355},
{"lat": 52.052636, "lon": 4.289576},
{"lat": 52.060829, "lon": 4.318683},
{"lat": 52.075680, "lon": 4.306810},
{"lat": 52.040353, "lon": 4.256946},
{"lat": 52.089381, "lon": 4.345599},
{"lat": 52.111719, "lon": 4.283909},
{"lat": 52.055222, "lon": 4.233827},
{"lat": 52.046393, "lon": 4.253105},
{"lat": 52.144177, "lon": 4.405549},
{"lat": 51.987035, "lon": 4.199314},
{"lat": 52.061650, "lon": 4.486572}]
v = {'lat': 52.103167, 'lon': 4.317532}
print(closest(tempDataList, v))
这是我失败的地方,因为我根本不知道如何将v
分为两列并将其放入新列。
我希望有一列能显示最近警察局的拉特朗(latlong)。
有时我遇到问题TypeError: string indices must be integers
。
答案 0 :(得分:0)
下面您将看到如何将索引列表转换为numpy数组,之后可以在其上进行操作而不必遍历每个元素。
import numpy as np
# numpy allows you to work with arrays; math only works with scalars
from numpy import cos, arcsin as asin, sqrt
def distance (lat1, lon1, lat2, lon2):
"""Return the distances between all accidents (lat1,lon1)
and all police stations (lat2,lon2) as a 2-dimensional array
"""
# add dummy dimension to p
lat2 = lat2[:,None]
lon2 = lon2[:,None]
p = 0.017453292519943295
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p)*cos(lat2*p) * (1-cos((lon2-lon1)*p)) / 2
return 12742 * asin(sqrt(a))
def closest(*args):
"""Returns the index (counting from zero) of the closest
police station for every accident.
"""
return np.argmin(distance(*args), axis=0)
tempDataList = [{"lat": 52.003181, "lon": 4.353068},
{"lat": 52.089416, "lon": 4.377340},
{"lat": 52.019911, "lon": 4.426602},
{"lat": 52.054457, "lon": 4.388764},
{"lat": 52.044536, "lon": 4.332631},
{"lat": 52.072910, "lon": 4.274784},
{"lat": 52.066099, "lon": 4.298664},
{"lat": 52.070030, "lon": 4.317355},
{"lat": 52.052636, "lon": 4.289576},
{"lat": 52.060829, "lon": 4.318683},
{"lat": 52.075680, "lon": 4.306810},
{"lat": 52.040353, "lon": 4.256946},
{"lat": 52.089381, "lon": 4.345599},
{"lat": 52.111719, "lon": 4.283909},
{"lat": 52.055222, "lon": 4.233827},
{"lat": 52.046393, "lon": 4.253105},
{"lat": 52.144177, "lon": 4.405549},
{"lat": 51.987035, "lon": 4.199314},
{"lat": 52.061650, "lon": 4.486572}]
# first get lat and lon into arrays
lat, lon = np.transpose([[i['lat'],i['lon']] for i in tempDataList])
# I'm making up the police stations here. Say 5 police stations.
# you should load the actual data in your problem. My station locations
# are randomly located near the first 5 accidents
npolice = 5
# for reproducibility
np.random.seed(3)
plat = lat[:npolice] + np.random.normal(0, 0.02, npolice)
plon = lon[:npolice] + np.random.normal(0, 0.02, npolice)
index = closest(lat, lon, plat, plon)
# index = array([3, 1, 2, 0, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 4, 4, 1, 4, 2])
所以最近的警察局位置应该是
nearest = {'lat': plat[index], 'lon': plon[index]}
如果您还存储了每个警察局的名称或地址,则可以使用index
来访问它们。
希望有帮助。