我正在尝试使用Tensorflow版本2.0.0a(CPU版本)在VS-Code中工作的分布式TF。
我正在使用Windows和Linux系统(两台不同的计算机),并且两者都运行良好。
对于已发行的TF,我遵循以下教程 https://www.tensorflow.org/alpha/guide/distribute_strategy。
我已经尝试了其他端口并关闭了防火墙。我还尝试将主系统从Windows切换到Linux,但现在我认为这可能是代码问题,或者是标为实验性的TF版本。
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow_datasets as tfds
import tensorflow as tf
import json
import os
BUFFER_SIZE = 10000
BATCH_SIZE = 64
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
train_datasets_unbatched = datasets['train'].map(scale).shuffle(BUFFER_SIZE)
train_datasets = train_datasets_unbatched.batch(BATCH_SIZE)
def build_and_compile_cnn_model():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
loss=tf.keras.losses.sparse_categorical_crossentropy,
optimizer=tf.keras.optimizers.SGD(learning_rate=0.001),
metrics=['accuracy'])
return model
#multiworker conf:
os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["192.168.0.12:2468", "192.168.0.13:1357"]
},
'task': {'type': 'worker', 'index': 0}
})
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
NUM_WORKERS = 2
GLOBAL_BATCH_SIZE = 64 * NUM_WORKERS
#--------------------------------------------------------------------
#In the following line the error occurs
train_datasets = train_datasets_unbatched.batch(GLOBAL_BATCH_SIZE)
#--------------------------------------------------------------------
with strategy.scope():
multi_worker_model = build_and_compile_cnn_model()
multi_worker_model.fit(x=train_datasets, epochs=3)
我希望工作人员可以开始学习过程,但是却收到错误消息:
“ F tensorflow / core / framework / device_base.cc:33]设备未实现name()”
答案 0 :(得分:0)
据我所知,每个工人都应该有一个唯一的任务索引,例如:
在第一台计算机上,您应该具有:
os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["192.168.0.12:2468", "192.168.0.13:1357"]
},
'task': {'type': 'worker', 'index': 0}
})
第二个:
os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["192.168.0.12:2468", "192.168.0.13:1357"]
},
'task': {'type': 'worker', 'index': 1}
})