在Python上实现AVL TREE。检查代码

时间:2019-06-05 08:44:35

标签: python python-3.x avl-tree

我有代码,它是AVL Tree的实现。它支持删除和插入。但是,一旦提交作业,我最终得不到满分。可以正常使用的测试用例可以正常工作,但是提交后,我会不断获得6/10个测试用例(这10个对我来说不可用)。因此,我想请您仔细阅读代码,找出一些可能的错误。非常感谢你!

我尝试了互联网上推荐的不同类型的AVL树。他们都没有帮助

class TreeNode(object):
    def __init__(self, key, value):
        self.key = key
        self.value = value
        self.left = None
        self.right = None
        self.height = 1


# AVL tree class which supports the
# Insert operation
class AVL_Tree(object):

    # Recursive function to insert key in
    # subtree rooted with node and returns
    # new root of subtree.
    def insert(self, root, key, value):

        # Step 1 - Perform normal BST
        if not root:
            return TreeNode(key, value)
        elif key < root.key:
            root.left = self.insert(root.left, key, value)
        else:
            root.right = self.insert(root.right, key, value)

            # Step 2 - Update the height of the
        # ancestor node
        root.height = 1 + max(self.getHeight(root.left),
                              self.getHeight(root.right))

        # Step 3 - Get the balance factor
        balance = self.getBalance(root)

        # Step 4 - If the node is unbalanced,
        # then try out the 4 cases
        # Case 1 - Left Left
        if balance > 1 and key < root.left.key:
            return self.rightRotate(root)

            # Case 2 - Right Right
        if balance < -1 and key > root.right.key:
            return self.leftRotate(root)

            # Case 3 - Left Right
        if balance > 1 and key > root.left.key:
            root.left = self.leftRotate(root.left)
            return self.rightRotate(root)

            # Case 4 - Right Left
        if balance < -1 and key < root.right.key:
            root.right = self.rightRotate(root.right)
            return self.leftRotate(root)

        return root

    # Recursive function to delete a node with
    # given key from subtree with given root.
    # It returns the root of the modified subtree.
    def delete(self, root, key):

        # Step 1 - Perform standard BST delete
        if not root:
            return root

        elif key < root.key:
            root.left = self.delete(root.left, key)

        elif key > root.key:
            root.right = self.delete(root.right, key)

        else:
            if root.left is None:
                temp = root.right
                root = None
                return temp

            elif root.right is None:
                temp = root.left
                root = None
                return temp

            temp = self.getMinValueNode(root.right)
            root.key = temp.key
            root.right = self.delete(root.right, temp.key)

            # If the tree has only one node,
        # simply return it
        if root is None:
            return root

            # Step 2 - Update the height of the
        # ancestor node
        root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))

        # Step 3 - Get the balance factor
        balance = self.getBalance(root)

        # Step 4 - If the node is unbalanced,
        # then try out the 4 cases
        # Case 1 - Left Left
        if balance > 1 and self.getBalance(root.left) >= 0:
            return self.rightRotate(root)

        # Case 2 - Right Right
        if balance < -1 and self.getBalance(root.right) <= 0:
            return self.leftRotate(root)

        # Case 3 - Left Right
        if balance > 1 and self.getBalance(root.left) < 0:
            root.left = self.leftRotate(root.left)
            return self.rightRotate(root)

        # Case 4 - Right Left
        if balance < -1 and self.getBalance(root.right) > 0:
            root.right = self.rightRotate(root.right)
            return self.leftRotate(root)

        return root

    def leftRotate(self, z):

        y = z.right
        T2 = y.left

        # Perform rotation
        y.left = z
        z.right = T2

        # Update heights
        z.height = 1 + max(self.getHeight(z.left),
                           self.getHeight(z.right))
        y.height = 1 + max(self.getHeight(y.left),
                           self.getHeight(y.right))

        # Return the new root
        return y

    def rightRotate(self, z):

        y = z.left
        T3 = y.right

        # Perform rotation
        y.right = z
        z.left = T3

        # Update heights
        z.height = 1 + max(self.getHeight(z.left),
                           self.getHeight(z.right))
        y.height = 1 + max(self.getHeight(y.left),
                           self.getHeight(y.right))

        # Return the new root
        return y

    def getHeight(self, root):
        if not root:
            return 0

        return root.height

    def getMinValueNode(self, root):
        if root is None or root.left is None:
            return root

        return self.getMinValueNode(root.left)

    def getBalance(self, root):
        if not root:
            return 0

        return self.getHeight(root.left) - self.getHeight(root.right)

    def preOrder(self, root):
        if not root:
            return

        pre_temp.append(root.value)
        self.preOrder(root.left)
        self.preOrder(root.right)

        return pre_temp

    def inOrder(self, root):
        if not root:
            return

        self.inOrder(root.left)
        in_temp.append(root.value)
        self.inOrder(root.right)

        return in_temp

    # Driver program to test the above function


treeAVL = AVL_Tree()
root = None

while True:
    line = input()
    if line.split(" ")[0] == "insert":
        root = treeAVL.insert(root, line.split(" ")[1], line.split(" ")[2])
    elif line.split(" ")[0] == "remove":
        root = treeAVL.delete(root, line.split(" ")[1])
    elif line == "quit":
        break

inOrder = ""
preOrder = ""
pre_temp = []
in_temp = []


for i in treeAVL.inOrder(root):
    inOrder += i + ' '

print(inOrder.strip() + '\n')

for i in treeAVL.preOrder(root):
    preOrder += i + ' '

print(preOrder.strip() + '\n')

我想问题出在删除操作上。但是,我找不到它。

0 个答案:

没有答案