给出以下示例数组:
import numpy as np
example = np.array(
[[[ 0, 0, 0, 255],
[ 0, 0, 0, 255]],
[[ 0, 0, 0, 255],
[ 221, 222, 13, 255]],
[[-166, -205, -204, 255],
[-257, -257, -257, 255]]]
)
我想用[0, 0, 0, 255]
替换值[255, 0, 0, 255]
的值,其他所有内容都变成[0, 0, 0, 0]
。
所以所需的输出是:
[[[ 255, 0, 0, 255],
[ 255, 0, 0, 255]],
[[ 255, 0, 0, 255],
[ 0, 0, 0, 0]],
[[ 0, 0, 0, 0],
[ 0, 0, 0, 0]]
此解决方案已结束:
np.place(example, example==[0, 0, 0, 255], [255, 0, 0, 255])
np.place(example, example!=[255, 0, 0, 255], [0, 0, 0, 0])
但是它改为输出:
[[[255 0 0 255],
[255 0 0 255]],
[[255 0 0 255],
[ 0 0 0 255]], # <- extra 255 here
[[ 0 0 0 0],
[ 0 0 0 0]]]
执行此操作的好方法是什么?
答案 0 :(得分:3)
您可以使用
找到所有出现的[0, 0, 0, 255]
np.all(example == [0, 0, 0, 255], axis=-1)
# array([[ True, True],
# [ True, False],
# [False, False]])
将这些位置保存到mask
,将所有内容设置为零,然后将所需的输出放置到mask
位置:
mask = np.all(example == [0, 0, 0, 255], axis=-1)
example[:] = 0
example[mask, :] = [255, 0, 0, 255]
# array([[[255, 0, 0, 255],
# [255, 0, 0, 255]],
#
# [[255, 0, 0, 255],
# [ 0, 0, 0, 0]],
#
# [[ 0, 0, 0, 0],
# [ 0, 0, 0, 0]]])
答案 1 :(得分:2)
这是一种方法:
a = np.array([0, 0, 0, 255])
replace = np.array([255, 0, 0, 255])
m = (example - a).any(-1)
np.logical_not(m)[...,None] * replace
array([[[255, 0, 0, 255],
[255, 0, 0, 255]],
[[255, 0, 0, 255],
[ 0, 0, 0, 0]],
[[ 0, 0, 0, 0],
[ 0, 0, 0, 0]]])