我正在尝试在python上实现FRST以检测椭圆形对象(例如显微图像中的细胞)的质心,但是我的实现未找到椭圆形对象的种子点(或多或少的中心点)。这项工作来自复制轮廓图像中重叠椭圆对象的分段(https://ieeexplore.ieee.org/document/7300433)中的FRST。我不知道为什么会有这些假象。有趣的是,我看到每个对象的这些图案(交叉)都在相同的方向上。在正确方向上产生与论文相同结果的任何点(只是查找种子点)将是最受欢迎的。
原始论文:Loy和Zelinsky编写的用于检测兴趣点的快速径向对称变换(ECCV 2002)
我还尝试了针对FRST的现有python软件包:https://pypi.org/project/frst/。这样就导致了相同的工件。奇怪的。
from scipy.ndimage import gaussian_filter
import numpy as np
from scipy.signal import convolve
# Get orientation projection image
def get_proj_img(image, radius):
workingDims = tuple((e + 2*radius) for e in image.shape)
h,w = image.shape
ori_img = np.zeros(workingDims) # Orientation Projection Image
mag_img = np.zeros(workingDims) # Magnitutde Projection Image
# Kenels for the sobel operator
a1 = np.matrix([1, 2, 1])
a2 = np.matrix([-1, 0, 1])
Kx = a1.T * a2
Ky = a2.T * a1
# Apply the Sobel operator
sobel_x = convolve(image, Kx)
sobel_y = convolve(image, Ky)
sobel_norms = np.hypot(sobel_x, sobel_y)
# Distances to afpx, afpy (affected pixels)
dist_afpx = np.multiply(np.divide(sobel_x, sobel_norms, out = np.zeros(sobel_x.shape), where = sobel_norms!=0), radius)
dist_afpx = np.round(dist_afpx).astype(int)
dist_afpy = np.multiply(np.divide(sobel_y, sobel_norms, out = np.zeros(sobel_y.shape), where = sobel_norms!=0), radius)
dist_afpy = np.round(dist_afpy).astype(int)
for cords, sobel_norm in np.ndenumerate(sobel_norms):
i, j = cords
pos_aff_pix = (i+dist_afpx[i,j], j+dist_afpy[i,j])
neg_aff_pix = (i-dist_afpx[i,j], j-dist_afpy[i,j])
ori_img[pos_aff_pix] += 1
ori_img[neg_aff_pix] -= 1
mag_img[pos_aff_pix] += sobel_norm
mag_img[neg_aff_pix] -= sobel_norm
ori_img = ori_img[:h, :w]
mag_img = mag_img[:h, :w]
print ("Did it go back to the original image size? ")
print (ori_img.shape == image.shape)
# try normalizing ori and mag img
return ori_img, mag_img
def get_sn(ori_img, mag_img, radius, kn, alpha):
ori_img_limited = np.minimum(ori_img, kn)
fn = np.multiply(np.divide(mag_img,kn), np.power((np.absolute(ori_img_limited)/kn), alpha))
# convolute fn with gaussian filter.
sn = gaussian_filter(fn, 0.25*radius)
return sn
def do_frst(image, radius, kn, alpha, ksize = 3):
ori_img, mag_img = get_proj_img(image, radius)
sn = get_sn(ori_img, mag_img, radius, kn, alpha)
return sn
参数:
radius = 50
kn = 10
alpha = 2
beta = 0
stdfactor = 0.25