我需要从文件中读取以下矩阵。它是一个对称相关矩阵,因此省略了一半。
1.00
0.49 1.00
0.53 0.57 1.00
0.49 0.46 0.48 1.00
0.51 0.53 0.57 0.57 1.00
0.33 0.30 0.31 0.24 0.38 1.00
0.32 0.21 0.23 0.22 0.32 0.43 1.00
0.20 0.16 0.14 0.12 0.17 0.27 0.33 1.00
0.19 0.08 0.07 0.19 0.23 0.24 0.26 0.25 1.00
0.30 0.27 0.24 0.21 0.32 0.34 0.54 0.46 0.28 1.00
0.37 0.35 0.37 0.29 0.36 0.37 0.32 0.29 0.30 0.35 1.00
0.21 0.20 0.18 0.16 0.27 0.40 0.58 0.45 0.27 0.59 0.31 1.00
当前,我正在使用
data1 <- na.omit(as.vector(t(read.table('triangle-data.txt', fill = TRUE))))
pt <- 12
R <- matrix(0, nrow = pt , ncol = pt)
for(i in 1:pt){
R[i, 1:i] <- data1[(i*(i-1)/2 + 1): (i*(i+1)/2)]
}
R <- R + t(R) - diag(rep(1, pt))
R
结果是
> dput(R)
structure(c(1, 0.49, 0.53, 0.49, 0.51, 0.33, 0.32, 0.2, 0.19,
0.3, 0.37, 0.21, 0.49, 1, 0.57, 0.46, 0.53, 0.3, 0.21, 0.16,
0.08, 0.27, 0.35, 0.2, 0.53, 0.57, 1, 0.48, 0.57, 0.31, 0.23,
0.14, 0.07, 0.24, 0.37, 0.18, 0.49, 0.46, 0.48, 1, 0.57, 0.24,
0.22, 0.12, 0.19, 0.21, 0.29, 0.16, 0.51, 0.53, 0.57, 0.57, 1,
0.38, 0.32, 0.17, 0.23, 0.32, 0.36, 0.27, 0.33, 0.3, 0.31, 0.24,
0.38, 1, 0.43, 0.27, 0.24, 0.34, 0.37, 0.4, 0.32, 0.21, 0.23,
0.22, 0.32, 0.43, 1, 0.33, 0.26, 0.54, 0.32, 0.58, 0.2, 0.16,
0.14, 0.12, 0.17, 0.27, 0.33, 1, 0.25, 0.46, 0.29, 0.45, 0.19,
0.08, 0.07, 0.19, 0.23, 0.24, 0.26, 0.25, 1, 0.28, 0.3, 0.27,
0.3, 0.27, 0.24, 0.21, 0.32, 0.34, 0.54, 0.46, 0.28, 1, 0.35,
0.59, 0.37, 0.35, 0.37, 0.29, 0.36, 0.37, 0.32, 0.29, 0.3, 0.35,
1, 0.31, 0.21, 0.2, 0.18, 0.16, 0.27, 0.4, 0.58, 0.45, 0.27,
0.59, 0.31, 1), .Dim = c(12L, 12L))
这太笨拙了,我需要对它的大小进行硬编码。有没有更方便的方法?
答案 0 :(得分:1)
我使用readLines
和strsplit
的组合来读取文件
a <- sapply(sapply(lapply(readLines("triangle.txt"),
function(x) strsplit(x, " ")), "[", 1),
function(x) na.omit(as.numeric(x)))
和rbind
将其转换为方阵
A <- do.call("rbind", a)
尽管有警告,但仍可以从文件中正确读取矩阵的下部,但上部均被弄乱了,我用一些肮脏的技巧对其进行了修复
A[upper.tri(A)] <- 0
A <- A + t(A) - diag(nrow(A))
编辑
另一个基于系数向量的简单解决方案:
data1 <- na.omit(as.vector(t(read.table('triangle.txt', fill = TRUE))))
n <- Re(polyroot(c(-length(data1), 1/2, 1/2)))[1]
A <- matrix(0, n, n)
A[upper.tri(A, diag = T)] <- data1
A <- A + t(A) - diag(n)