我想将一个整数列表(或任何多维numpy矩阵)写入一个TFRecords示例。对于单个值或多个值的列表,我都可以无错误地创建TFRecord文件。我也知道如何从TFRecord文件中读取单个值,如下面从各种来源编译的代码示例所示。
# Making an example TFRecord
my_example = tf.train.Example(features=tf.train.Features(feature={
'my_ints': tf.train.Feature(int64_list=tf.train.Int64List(value=[5]))
}))
my_example_str = my_example.SerializeToString()
with tf.python_io.TFRecordWriter('my_example.tfrecords') as writer:
writer.write(my_example_str)
# Reading it back via a Dataset
featuresDict = {'my_ints': tf.FixedLenFeature([], dtype=tf.int64)}
def parse_tfrecord(example):
features = tf.parse_single_example(example, featuresDict)
return features
Dataset = tf.data.TFRecordDataset('my_example.tfrecords')
Dataset = Dataset.map(parse_tfrecord)
iterator = Dataset.make_one_shot_iterator()
with tf.Session() as sess:
print(sess.run(iterator.get_next()))
但是如何从一个示例中读回值列表(例如[5,6])? featuresDict
将功能定义为int64类型,当其中包含多个值并且出现以下错误时,该功能将失败:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Key: my_ints. Can't parse serialized Example.
答案 0 :(得分:0)
您可以通过使用tf.train.SequenceExample来实现。我已经编辑了您的代码以返回1D和2D数据。首先,创建放置在tf.train.FeatureList中的功能列表。我们将2D数据转换为字节。
vals = [5, 5]
vals_2d = [np.zeros((5,5), dtype=np.uint8), np.ones((5,5), dtype=np.uint8)]
features = [tf.train.Feature(int64_list=tf.train.Int64List(value=[val])) for val in vals]
features_2d = [tf.train.Feature(bytes_list=tf.train.BytesList(value=[val.tostring()])) for val in vals_2d]
featureList = tf.train.FeatureList(feature=features)
featureList_2d = tf.train.FeatureList(feature=features_2d)
为了获得正确的2D特征形状,我们需要提供上下文(非顺序数据),这是通过上下文字典完成的。
context_dict = {'height': tf.train.Feature(int64_list=tf.train.Int64List(value=[vals_2d[0].shape[0]])),
'width': tf.train.Feature(int64_list=tf.train.Int64List(value=[vals_2d[0].shape[1]])),
'length': tf.train.Feature(int64_list=tf.train.Int64List(value=[len(vals_2d)]))}
然后将每个FeatureList放入tf.train.FeatureLists字典中。最后,将其与上下文字典一起放置在tf.train.SequenceExample中
my_example = tf.train.SequenceExample(feature_lists=tf.train.FeatureLists(feature_list={'1D':featureList,
'2D': featureList_2d}),
context = tf.train.Features(feature=context_dict))
my_example_str = my_example.SerializeToString()
with tf.python_io.TFRecordWriter('my_example.tfrecords') as writer:
writer.write(my_example_str)
要将其读回张量流,您需要使用tf.FixedLenSequenceFeature作为顺序数据,并使用tf.FixedLenFeature作为上下文数据。我们将字节转换回整数,并解析上下文数据,以恢复正确的形状。
# Reading it back via a Dataset
featuresDict = {'1D': tf.FixedLenSequenceFeature([], dtype=tf.int64),
'2D': tf.FixedLenSequenceFeature([], dtype=tf.string)}
contextDict = {'height': tf.FixedLenFeature([], dtype=tf.int64),
'width': tf.FixedLenFeature([], dtype=tf.int64),
'length':tf.FixedLenFeature([], dtype=tf.int64)}
def parse_tfrecord(example):
context, features = tf.parse_single_sequence_example(example, sequence_features=featuresDict, context_features=contextDict)
height = context['height']
width = context['width']
seq_length = context['length']
vals = features['1D']
vals_2d = tf.decode_raw(features['2D'], tf.uint8)
vals_2d = tf.reshape(vals_2d, [seq_length, height, width])
return vals, vals_2d
Dataset = tf.data.TFRecordDataset('my_example.tfrecords')
Dataset = Dataset.map(parse_tfrecord)
iterator = Dataset.make_one_shot_iterator()
with tf.Session() as sess:
print(sess.run(iterator.get_next()))
这将输出[5,5]和2D numpy数组的序列。这篇博客文章更深入地介绍了如何使用tfrecords https://dmolony3.github.io/Working%20with%20image%20sequences.html
定义序列