将ZipDataSet写入TFRecord

时间:2019-03-18 21:22:50

标签: python tensorflow tfrecord

我正在尝试在此之后将压缩的数据集写入TFRecord文件 tutorial,但我的处境不同,因为ZipDataSet中每个数据集的每个元素都是张量而不是标量。

本教程通过注释解决了这种情况

  

注意:为简单起见,本示例仅使用标量输入。处理非标量特征的最简单方法是使用tf.serialize_tensor将张量转换为二进制字符串。字符串是张量流中的标量。使用tf.parse_tensor将二进制字符串转换回张量。

但是我收到的错误似乎表明_bytes_feature函数正在获取张量而不是字节。

import tensorflow as tf
import numpy as np

sess = tf.Session()
def _bytes_feature(value):
    """Returns a bytes_list from a string / byte."""
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def serialize_with_labels(a, b, c, d):
    """
    Creates a tf.Example message ready to be written to a file.
    """

    # Create a dictionary mapping the feature name to the tf.Example-compatible
    # data type.

    feature = {'a': _bytes_feature(a),
               'b': _bytes_feature(b),
               'c': _bytes_feature(c),
               'd': _bytes_feature(d),
                }

    # Create a Features message using tf.train.Example.

    example_proto = tf.train.Example(features=tf.train
                                                .Features(feature=feature))
    return example_proto.SerializeToString()


def tf_serialize_w_labels(a, b, c, d):
    """Map serialize_with_labels to tf.data.Dataset."""
    tf_string = tf.py_func(serialize_with_labels,
                           (a, b, c, d),
                           tf.string)
    return tf.reshape(tf_string, ())

# a is a [n,m,p] tensor
# b is a [n,m,p] tensor
# c is a [n,m,p] tensor
# d is a [n,1,1] tensor

zipped = tf.data.Dataset().from_tensor_slices((a,b,c,d))
# I have confirmed that each item of serial_tensors is a tuple
# of four bytestrings.
serial_tensors = zipped.map(tf.serialize_tensor)

# Each item of serialized_features_dataset is a single bytestring
serialized_features_dataset = serial_tensors.map(tf_serialize_w_labels)
writer = tf.contrib.data.TFRecordWriter('test_output')
writeop = writer.write(serialized_features_dataset)
sess.run(writeop)

是我要运行的代码的基本格式。它写了,但是当我读TFRecord时,

def _parse_function(example_proto):
    # Parse the input tf.Example proto using the dictionary below.

    feature_description = {
    'a': tf.FixedLenFeature([], tf.string, default_value=''),
    'b': tf.FixedLenFeature([], tf.string, default_value=''),
    'c': tf.FixedLenFeature([], tf.string, default_value=''),
    'd': tf.FixedLenFeature([], tf.string, default_value='')
    }
    return tf.parse_single_example(example_proto, feature_description)

filenames = ['zipped_TFR']
raw_dataset = tf.data.TFRecordDataset(filenames)
parsed = raw_dataset.map(_parse_function)
parsed_it = parsed.make_one_shot_iterator()

# prints the first element of a
print(sess.run(tf.parse_tensor(parsed_it.get_next()['a'], out_type=tf.int32)))
#prints the first element of b
print(sess.run(tf.parse_tensor(parsed_it.get_next()['b'], out_type=tf.int32)))
#prints the first element of c
print(sess.run(tf.parse_tensor(parsed_it.get_next()['c'], out_type=tf.int32)))
#prints nothing
print(sess.run(tf.parse_tensor(parsed_it.get_next()['d'], out_type=tf.int32)))

这不是迭代器用尽的问题,例如,在打印a,b或c之前,我尝试打印d,但是什么都没得到,然后在同一会话中成功打印了a。 >

我正在使用tensorflow-gpu版本1.10,并且我暂时坚持使用它,这就是为什么我使用

writer = tf.contrib.data.TFRecordWriter('test_output')

代替

writer = tf.data.experimental.TFRecordWriter('test_output')

编辑:这是有效的方法。

首先,我将a,b,c和d展平为[n,-1]。然后,我将serialize_w_labels更改为以下代码(不考虑tf_serialize_w_examples)。

def serialize_w_labels(a, b, c, d, n, m, p):
    # The object we return
    ex = tf.train.SequenceExample()
    # A non-sequential feature of our example
    ex.context.feature["d"].int64_list.value.append(d)
    ex.context.feature["n"].int64_list.value.append(n)
    ex.context.feature["m"].int64_list.value.append(m)
    ex.context.feature["p"].int64_list.value.append(p)
    # Feature lists for the two sequential features of our example
    fl_a = ex.feature_lists.feature_list["a"]
    fl_b = ex.feature_lists.feature_list["b"]
    fl_c = ex.feature_lists.feature_list["c"]
    for _a, _b, _c in zip(a, b, c):
        fl_a.feature.add().int64_list.value.append(_a)
        fl_b.feature.add().int64_list.value.append(_b)
        fl_c.feature.add().float_list.value.append(_c)
    return ex.SerializeToString()

以下代码正确解析了结果数据集的元素:

context_features = {
    "d": tf.FixedLenFeature([], dtype=tf.int64),
    "m": tf.FixedLenFeature([], dtype=tf.int64),
    "n": tf.FixedLenFeature([], dtype=tf.int64),
    "p": tf.FixedLenFeature([], dtype=tf.int64)
 }
sequence_features = {
    "a": tf.FixedLenSequenceFeature([], dtype=tf.int64),
    "b": tf.FixedLenSequenceFeature([], dtype=tf.int64),
    "c": tf.FixedLenSequenceFeature([], dtype=tf.float32)
}

context_parsed, sequence_parsed = tf.parse_single_sequence_example(
    serialized=ex,
    context_features=context_features,
    sequence_features=sequence_features
)

显然,您的dtype可能会有所不同。然后可以使用上下文特征重塑展平的a,b和c。

2 个答案:

答案 0 :(得分:1)

我认为您应该研究tf.io.FixedLenSequenceFeature,这应该允许您将一系列功能作为功能写入TFRecord文件。例如,它在YouTube8M数据集中用于存储一项功能,该功能对于每个视频都是一组帧,对于每个具有Tensor的帧。

文档: enter image description here

示例阅读方法: https://www.tensorflow.org/api_docs/python/tf/io/FixedLenSequenceFeature

答案 1 :(得分:0)

如果您想使用tf.serialize_tensor进行记录,则需要创建一个会话并评估张量。

_bytes_feature(sess.run(tf.serialize_tensor(features[key])))