我目前正在使用一种以Wavenumber
提供数据的仪器,但是我的大多数社区都在波长范围内工作。因此,我想创建在底部x轴的Wavenumber
中显示cm^-1
在顶部x的波长以µm显示的图。但是,两个测量单位之间的间距并不完全匹配,无法显示单个光谱。如何为波长创建不同的间距?
以下是一个示例,其中一个光谱的一部分作为波数的函数进行绘制,而与它作为波长的函数进行绘制的情况相比。下面是我当前正在执行的代码。
wn = wn_tot[425:3175] #range of 250 to 3000 cm-1
wl = 10000/wn #wavelength in microns
fig = plt.figure(1)
ax1 = plt.subplot(1,1,1)
ax2 = ax1.twiny()
ax1.plot(wn, spc[45], 'c', label='Wavenumber')
ax2.plot(wl, spc[45], 'm', label='Wavelength')
ax1.set_xlabel('Wavenumber (cm$^{-1}$)')
ax2.set_xlabel('Wavelength ($\mu$m)')
ax1.set_ylabel('Relative Intensity')
ax2.invert_xaxis()
fig.legend(loc=2, bbox_to_anchor=(0,1), bbox_transform=ax1.transAxes)
答案 0 :(得分:0)
对比例应用转换,这会使matplotlib具有不均匀的比例。
Axes.set_yscale的文档指向that example,该文档演示了语法ax1.set_xscale('function', functions=(forward, inverse))
。在这种情况下,转换函数很简单
def forward(wn):
# cm^{-1} to μm
return 1.0e4 / wn
def reverse(lam):
# μm to cm^{-1}
return 1.0e4 / lam
但是,我的matplotlib停留在不具有该功能的2.2.2版本中,因此我无法给出有效的示例。
手动给出刻度位置和标签,自己执行计算。
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
def lambda_to_wave(lam):
# μm to cm^{-1}
return 1.0e4 / lam
x_wave = np.linspace(2000.0, 3000.0)
y_arb = np.linspace(0.0, 1.0e6)
ticks_wavelength_values = np.linspace(3.5, 5.5, num=5)
ticks_labels = [str(lam) for lam in ticks_wavelength_values]
ticks_wavenumber_positions = lambda_to_wave(ticks_wavelength_values)
print ticks_wavelength_values
print ticks_wavenumber_positions
fig = plt.figure(1)
ax1 = plt.subplot(1,1,1) # wavenumber
ax2 = ax1.twiny() # wavelength
ax2.get_shared_x_axes().join(ax1, ax2) # https://stackoverflow.com/questions/42973223/how-share-x-axis-of-two-subplots-after-they-are-created
ax1.plot(x_wave, y_arb, 'c', label='Data')
ax1.set_xlabel('Wavenumber (cm$^{-1}$)')
ax1.set_ylabel('Relative Intensity')
ax2.set_xticks(ticks_wavenumber_positions)
ax2.set_xticklabels(ticks_labels)
ax2.set_xlabel('Wavelength ($\mu$m)')
ax1.set_xlim(left=1800.0, right=3000.0)
fig.legend(loc=2, bbox_to_anchor=(0,1), bbox_transform=ax1.transAxes)
plt.show()
答案 1 :(得分:0)
如果愿意,可以不用第二次调用就可以绘图:https://matplotlib.org/gallery/subplots_axes_and_figures/secondary_axis.html#sphx-glr-gallery-subplots-axes-and-figures-secondary-axis-py
wn = wn_tot[425:3175] #range of 250 to 3000 cm-1
fig = plt.figure(1)
ax1 = plt.subplot(1,1,1)
ax1.plot(wn, spc[45], 'c', label='Wavenumber')
def forward(x):
return 10000 / x
def inverse(x):
return 10000 / x
secax = ax.secondary_xaxis('top', functions=(forward, inverse))
ax1.set_xlabel('Wavenumber (cm$^{-1}$)')
secax.set_xlabel('Wavelength ($\mu$m)')
ax1.set_ylabel('Relative Intensity')