RandomForestRegressor模型评估?

时间:2019-06-02 12:44:45

标签: machine-learning scikit-learn regression random-forest

我是机器学习的新手,正在尝试了解对RandomForestRegressor的正确和适当的评估。我在下面提到了回归指标并理解了这些概念。

我不确定我可以将哪个指标用于RandomForestRegressor的评估。预测后可以一直使用r2_score吗?

我正在使用sklearn软件包。

Regression metrics
See the Regression metrics section of the user guide for further details.

metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
metrics.max_error(y_true, y_pred)   max_error metric calculates the maximum residual error.
metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
metrics.mean_squared_error(y_true, y_pred[, …]) Mean squared error regression loss
metrics.mean_squared_log_error(y_true, y_pred)  Mean squared logarithmic error regression loss
metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
metrics.r2_score(y_true, y_pred[, …])   R^2 (coefficient of determination) regression score function.

0 个答案:

没有答案