如何从HDFStore检索pandas df multiindex?

时间:2019-06-01 00:46:44

标签: python pandas dataframe hdf5 multi-index

如果是带有简单索引的DataFrame,则可以从HDFStore中检索索引,如下所示:

df = pd.DataFrame(np.random.randn(2, 3), index=list('yz'), columns=list('abc'))
df

>>>      a          b           c
>>> y   -0.181063   1.919440    1.550992
>>> z   -0.701797   1.917156    0.645707
with pd.HDFStore('test.h5') as store:
    store.put('df', df, format='t')
    store.select_column('df', 'index')

>>> 0    y
>>> 1    z
>>> Name: index, dtype: object

docs中所述。

但是如果使用MultiIndex,这种技巧就行不通了:

df = pd.DataFrame(np.random.randn(2, 3),
                  index=pd.MultiIndex.from_tuples([(0,'y'), (1, 'z')], names=['lvl0', 'lvl1']),
                  columns=list('abc'))
df

>>>                 a           b           c
>>> lvl0    lvl1            
>>>    0       y    -0.871125   0.001773     0.618647
>>>    1       z     1.001547   1.132322    -0.215681

更准确地说,它返回错误索引:

with pd.HDFStore('test.h5') as store:
    store.put('df', df, format='t')
    store.select_column('df', 'index')

>>> 0    0
>>> 1    1
>>> Name: index, dtype: int64

如何检索正确的DataFrame MultiIndex?

1 个答案:

答案 0 :(得分:0)

可以将select与指定的columns=['index']参数一起使用:

df = pd.DataFrame(np.random.randn(2, 3),
                  index=pd.MultiIndex.from_tuples([(0,'y'), (1, 'z')], names=['lvl0', 'lvl1']),
                  columns=list('abc'))
df

>>>                 a           b           c
>>> lvl0    lvl1            
>>>    0       y    -0.871125   0.001773     0.618647
>>>    1       z     1.001547   1.132322    -0.215681
with pd.HDFStore('test.h5') as store:
    store.put('df', df, format='t')
    store.select('df', columns=['index'])

>>> lvl0    lvl1
>>>    0       y
>>>    1       z

它可以工作,但似乎不是documented