The line with fillna()
raises the warning even though it is not performed inplace. Why is that?
import pandas as pd
import numpy as np
tuples = [('foo', 1), ('foo', 2), ('bar', 1), ('bar', 2)]
index = pd.MultiIndex.from_tuples(tuples)
df = pd.DataFrame(np.random.randn(2, 4), columns=index)
df.loc[0, ('foo', 1)] = np.nan
# this works without warning
# df = pd.DataFrame({'foo': [1, np.nan, 3], 'bar': [np.nan, 22, 33]]})
df1 = df[['foo', 'bar']]
# df1 = df[['foo', 'bar']].copy() # this does not help
filled = df1.fillna({'foo': 100, 'bar': 200}, inplace=False)
The problem does not appear if foo
and bar
are ordinary columns, not multiindexed.
答案 0 :(得分:0)
这是误报,因此不应在此处提出警告。我认为问题在于fillna
不了解“ foo”和“ bar”适用于您的MultiIndex列的特定级别。
我建议在fillna
内部调用GroupBy
作为解决方法,直到实现此功能为止。
fill = {'foo': 100, 'bar': 200}
df1.groupby(level=0, axis=1).apply(lambda x: x.fillna(fill[x.name]))
foo bar
1 2 1 2
0 100.000000 1.040531 -1.516983 -0.866276
1 -0.055035 -0.107310 1.365467 -0.097696
或者,要直接使用fillna
,请指定一个元组的字典(因为MultiIndex),
df1.fillna({('foo', 1): 100, ('foo', 2): 100})
foo bar
1 2 1 2
0 100.000000 1.040531 -1.516983 -0.866276
1 -0.055035 -0.107310 1.365467 -0.097696