让我们看一下简单的类:
class Temp1(nn.Module):
def __init__(self, stateSize, actionSize, layers=[10, 5], activations=[F.tanh, F.tanh] ):
super(Temp1, self).__init__()
self.layer1 = nn.Linear(stateSize, layers[0])
self.layer2 = nn.Linear(layers[0], layers[1])
self.fcFinal = nn.Linear( layers[1], actionSize )
return
这是一个相当简单的pytorch模块。它创建了一个简单的顺序密集网络。如果我们检查其隐藏参数,则会看到以下内容:
t1 = Temp1(2, 2)
list(t1.parameters())
这是预期的结果...
[Parameter containing:
tensor([[-0.0311, -0.5513],
[-0.0634, -0.3783],
[-0.2514, 0.6139],
[ 0.4711, -0.0241],
[-0.1739, 0.2208],
[-0.1533, 0.3838],
[-0.6490, -0.5784],
[ 0.5312, 0.6703],
[ 0.3506, 0.3652],
[ 0.1768, -0.4158]], requires_grad=True), Parameter containing:
tensor([-0.3199, -0.4154, -0.5530, -0.6738, -0.4411, 0.2641, -0.3576, 0.0447,
0.0254, 0.0965], requires_grad=True), Parameter containing:
tensor([[-2.8257e-01, 6.7583e-02, 9.0356e-02, 1.0868e-01, 4.0876e-02,
4.0616e-02, 4.4419e-02, -8.1544e-02, 2.5244e-01, 3.8777e-03],
[-8.0950e-03, -1.4175e-01, -2.9492e-01, 3.1439e-01, -2.3065e-01,
-6.6631e-02, 3.0047e-01, 2.8353e-01, 2.3457e-01, -3.1399e-03],
[-5.2522e-02, -2.2183e-01, -1.5485e-01, 2.6317e-01, 2.8273e-01,
-7.4823e-02, -5.3704e-02, 9.3526e-02, -1.7916e-01, -3.1132e-04],
[ 8.9063e-02, 2.9263e-01, -1.0052e-01, 8.7005e-02, -1.1246e-01,
-2.7968e-01, 4.1411e-02, -1.6776e-01, 1.2363e-01, -2.2808e-01],
[ 2.9244e-02, 5.8296e-02, -2.9729e-01, -3.1437e-01, -9.3182e-02,
-7.5236e-03, 5.6159e-02, -2.2075e-02, 1.0337e-01, 8.1123e-02]],
requires_grad=True), Parameter containing:
tensor([ 0.2240, 0.0997, -0.0047, -0.1784, -0.0369], requires_grad=True), Parameter containing:
tensor([[ 0.3546, -0.2180, 0.1723, -0.0463, 0.2572],
[-0.1669, -0.1364, -0.0398, 0.2233, -0.1805]], requires_grad=True), Parameter containing:
tensor([ 0.0871, -0.1698], requires_grad=True)]
现在,让我们尝试概括一下:
class Temp(nn.Module):
def __init__(self, stateSize, actionSize, layers=[10, 5], activations=[F.tanh, F.tanh] ):
super(Temp, self).__init__()
# Generate the fullly connected layer functions
self.fcLayers = []
oldN = stateSize
for i, layer in enumerate(layers):
self.fcLayers.append( nn.Linear(oldN, layer) )
oldN = layer
self.fcFinal = nn.Linear( oldN, actionSize )
return
事实证明,此模块中的参数数量不再相同...
t = Temp(2, 3)
list(t.parameters())
[Parameter containing:
tensor([[-0.3342, 0.4111, 0.0418, 0.4457, 0.0648],
[ 0.4364, -0.0360, -0.2239, 0.4025, 0.1661],
[ 0.1932, -0.0896, 0.3269, -0.2179, 0.1035]], requires_grad=True),
Parameter containing:
tensor([-0.2867, -0.1354, -0.0026], requires_grad=True)]
我相信了解为什么。更大的问题是,我们如何克服这个问题?例如,第二种通用方法将无法正确发送到GPU,并且不会由优化器进行训练。
答案 0 :(得分:1)
问题在于,“通用”版本中的大多数nn.Linear
层都存储在常规pythonic列表(self.fcLayers
)中。 pytorch不知道要在nn.Paramters
的常规pythonic成员中寻找nn.Module
。
解决方案:
如果您希望以pytorch可以管理它们的方式存储nn.Modules
,则需要使用专门的pytorch containers。
例如,如果您使用nn.ModuleList
而不是常规的pythonic列表:
self.fcLayers = nn.ModuleList([])
您的示例应该可以正常工作。
顺便说一句,
您需要pytorch知道nn.Module
的成员本身就是模块,不仅可以获取其参数,还可以用于其他功能,例如将其移至gpu / cpu,将其模式设置为eval / training等。>