此算法(最初在unl-aligner中实现)计算序列中相应编号递增的最长编号列表,因此给出
seq = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
它将返回
[0, 2, 6, 9, 11, 15]
实现看起来像
def subseq(seq, keyfn=lambda value: value):
if not seq: return seq
tail = []
prev = []
for i in range(len(seq)):
for k in range(len(tail)-1, -1, -1):
if keyfn(seq[tail[k]]) < keyfn(seq[i]):
if len(tail) == k+1:
tail.append(i)
elif keyfn(seq[tail[k+1]]) > keyfn(seq[i]):
tail[k+1] = i
prev.append(tail[k])
break
else:
tail.append(i)
prev.append(None)
i = tail[-1]
subseq = [seq[i]]
while prev[i] is not None:
i = prev[i]
subseq.append(seq[i])
subseq.reverse()
return subseq
该算法执行线性扫描,而二分法(二进制)搜索应为preferred。 重构它以执行二进制搜索的最佳方法是哪种?
答案 0 :(得分:1)
使用this答案:
bisect = "longest_subsequence([1,2,3,4,5,6,7,2,2,2,2,2,5,1,7,8])"
_subseq = "subseq([1,2,3,4,5,6,7,2,2,2,2,2,5,1,7,8])"
from timeit import timeit
print(timeit(bisect, globals=globals(), number=10000)) # 0.2994734
print(timeit(_subseq, globals=globals(), number=10000)) # 0.32428109999999993
这是完全随机测试的结果,在您的示例中,它们似乎在时间上几乎是准确的